3-Hexene, 2,2-dimethyl-, (E)-
- Formula: C8H16
- Molecular weight: 112.2126
- IUPAC Standard InChIKey: JPLZSSHKQZJYTJ-VOTSOKGWSA-N
- CAS Registry Number: 690-93-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Species with the same structure:
- Stereoisomers:
- Other names: (E)-2,2-Dimethyl-3-hexene; trans-2,2-Dimethyl-3-hexene; 2,2-Dimethyl-trans-3-hexene; (E)-2,2-Dimethylhex-3-ene
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Donald R. Burgess, Jr.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -28.20 | kcal/mol | N/A | Yates and McDonald, 1973 | Value computed using ΔfHliquid° value of -157.8±2 kj/mol from Yates and McDonald, 1973 and ΔvapH° value of 39.8 kj/mol from alkenes correlation. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -37.72 ± 0.48 | kcal/mol | Ccb | Yates and McDonald, 1973 | |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -1261.22 ± 0.48 | kcal/mol | Ccb | Yates and McDonald, 1973 | Corresponding ΔfHºliquid = -37.71 kcal/mol (simple calculation by NIST; no Washburn corrections) |
ΔcH°liquid | -1258.85 ± 0.34 | kcal/mol | Ccb | Yates and McDonald, 1971 | Corresponding ΔfHºliquid = -40.08 kcal/mol (simple calculation by NIST; no Washburn corrections) |
ΔcH°liquid | -1264.28 ± 0.29 | kcal/mol | Ccb | Rockenfeller and Rossini, 1961 | Derived from the ratio of Heat of combustion; Corresponding ΔfHºliquid = -34.65 kcal/mol (simple calculation by NIST; no Washburn corrections) |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 374.0 | K | N/A | Weast and Grasselli, 1989 | BS |
Tboil | 374.18 | K | N/A | Anonymous, 1951 | Uncertainty assigned by TRC = 0.3 K; TRC |
Tboil | 374.18 | K | N/A | Anonymous, 1951 | Uncertainty assigned by TRC = 0.3 K; TRC |
Tboil | 374.05 | K | N/A | Boord, Greenlee, et al., 1946 | Uncertainty assigned by TRC = 0.6 K; TRC |
Tboil | 374.65 | K | N/A | Boord, Greenlee, et al., 1945 | Uncertainty assigned by TRC = 1.5 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 8.89 | kcal/mol | N/A | Reid, 1972 | AC |
ΔvapH° | 8.89 | kcal/mol | V | Camin and Rossini, 1960 | ALS |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
8.63 | 321. | A | Stephenson and Malanowski, 1987 | Based on data from 306. to 379. K.; AC |
8.68 | 318. | MM | Camin and Rossini, 1960, 2 | Based on data from 303. to 374. K.; AC |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | NIST Standard Reference Data Program Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center |
State | gas |
Instrument | HP-GC/MS/IRD |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Petrocol DH | 30. | 710.5 | Soják, Addová, et al., 2004 | 150. m/0.25 mm/1. μm, H2 |
Capillary | Squalane | 30. | 693.2 | Soják, Addová, et al., 2004 | He; Column length: 93. m; Column diameter: 0.25 mm |
Capillary | Squalane | 50. | 693. | Rijks and Cramers, 1974 | N2; Column length: 100. m; Column diameter: 0.25 mm |
Capillary | Squalane | 70. | 692. | Rijks and Cramers, 1974 | N2; Column length: 100. m; Column diameter: 0.25 mm |
Capillary | Squalane | 40. | 694. | Matukuma, 1969 | N2; Column length: 91.4 m; Column diameter: 0.25 mm |
Packed | Squalane | 30. | 693. | Tourres, 1967 | H2; Column length: 10. m |
Packed | Squalane | 50. | 693. | Tourres, 1967 | H2; Column length: 10. m |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Petrocol DH | 709. | White, Hackett, et al., 1992 | 100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Petrocol DH | 710. | Supelco, 2012 | 100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min |
Capillary | Petrocol DH | 710. | Supelco, 2012 | 100. m/0.25 mm/0.50 μm, Helium, 20. C @ 15. min, 15. K/min, 220. C @ 30. min |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Yates and McDonald, 1973
Yates, K.; McDonald, R.S.,
Kinetics and mechanisms of electrophilic addition. II. A thermochemical-kinetic approach to transition-state structure,
J. Org. Chem., 1973, 38, 2465-2478. [all data]
Yates and McDonald, 1971
Yates, K.; McDonald, R.S.,
A thermochemical probe into the mechanism of electrophilic addition to olefins,
J. Am. Chem. Soc., 1971, 93, 6297-6299. [all data]
Rockenfeller and Rossini, 1961
Rockenfeller, J.D.; Rossini, F.D.,
Heats of combustion, isomerization, and formation of selected C7, C8, and C10 monoolefin hydrocarbons,
J. Phys. Chem., 1961, 65, 267-272. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Anonymous, 1951
Anonymous, R.,
, Sunbury Rep. No. 4199, Anglo-Iranian Oil Co., 1951. [all data]
Boord, Greenlee, et al., 1946
Boord, C.E.; Greenlee, K.W.; Perilstein, W.L.,
The Synthesis, Purification and Prop. of Hydrocarbons of Low Mol. Weight, Am. Pet. Inst. Res. Proj. 45, Eighth Annu. Rep., Ohio State Univ., June 30, 1946. [all data]
Boord, Greenlee, et al., 1945
Boord, C.E.; Greenlee, K.W.; Perilstein, W.L.,
, Am. Pet. Inst. Res. Proj. 45, Seventh Annu. Rep., Ohio State Univ., June 30, 1945. [all data]
Reid, 1972
Reid, Robert C.,
Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00,
AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637
. [all data]
Camin and Rossini, 1960
Camin, D.L.; Rossini, F.D.,
Physical properties of to selected C7 and C8 alkene hydrocarbons,
J. Chem. Eng. Data, 1960, 5, 368. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Camin and Rossini, 1960, 2
Camin, D.L.; Rossini, F.D.,
Physical Properties of 16 Selected C 7 and C 8 Alkene Hydrocarbons.,
J. Chem. Eng. Data, 1960, 5, 3, 368-372, https://doi.org/10.1021/je60007a037
. [all data]
Soják, Addová, et al., 2004
Soják, L.; Addová, G.; Kubinec, R.; Kraus, A.; Bohác, A.,
Capillary gas chromatography-mass spectrometry of all 93 acyclic octenes and their identification in fluid catalytic cracked gasoline,
J. Chromatogr. A, 2004, 1025, 2, 237-253, https://doi.org/10.1016/j.chroma.2003.10.112
. [all data]
Rijks and Cramers, 1974
Rijks, J.A.; Cramers, C.A.,
High precision capillary gas chromatography of hydrocarbons,
Chromatographia, 1974, 7, 3, 99-106, https://doi.org/10.1007/BF02269819
. [all data]
Matukuma, 1969
Matukuma, A.,
Retention indices of alkanes through C10 and alkenes through C8 and relation between boiling points and retention data,
Gas Chromatogr., Int. Symp. Anal. Instrum. Div Instrum Soc. Amer., 1969, 7, 55-75. [all data]
Tourres, 1967
Tourres, D.A.,
Structural analysis of industrial butene dimers by gas chromatography,
J. Gas Chromatogr., 1967, 5, 1, 35-40, https://doi.org/10.1093/chromsci/5.1.35
. [all data]
White, Hackett, et al., 1992
White, C.M.; Hackett, J.; Anderson, R.R.; Kail, S.; Spock, P.S.,
Linear temperature programmed retention indices of gasoline range hydrocarbons and chlorinated hydrocarbons on cross-linked polydimethylsiloxane,
J. Hi. Res. Chromatogr., 1992, 15, 2, 105-120, https://doi.org/10.1002/jhrc.1240150211
. [all data]
Supelco, 2012
Supelco, CatalogNo. 24160-U,
Petrocol DH Columns. Catalog No. 24160-U, 2012, retrieved from http://www.sigmaaldrich.com/etc/medialib/docs/Supelco/Datasheet/1/w97949.Par.0001.File.tmp/w97949.pdf. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Gas Chromatography, References
- Symbols used in this document:
Tboil Boiling point ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.