Ethane, hexachloro-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas-32.079kcal/molReviewChase, 1998Data last reviewed in September, 1967
Δfgas-35.4 ± 1.4kcal/molReviewManion, 2002weighted average of several measurements of equilibria involving C2Cl6, CCl4, and C2Cl4; DRB
Δfgas-34.3 ± 2.3kcal/molEqkPuyo, Balesdent, et al., 1963Reanalyzed by Cox and Pilcher, 1970, Original value = -34.7 ± 1.0 kcal/mol; ALS
Quantity Value Units Method Reference Comment
gas,1 bar95.086cal/mol*KReviewChase, 1998Data last reviewed in September, 1967

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1200.1200. to 6000.
A 31.1684046.13241
B 28.67139-1.441850
C -24.101410.241066
D 7.204281-0.014623
E -0.405846-2.449080
F -43.81341-52.07151
G 122.9810142.3080
H -32.08009-32.08009
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in September, 1967 Data last reviewed in September, 1967

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-47.6 ± 1.5kcal/molReviewManion, 2002derived from recommended ΔfHgas° and ΔvapH°; DRB
Quantity Value Units Method Reference Comment
Δcsolid-174. ± 2.kcal/molCcbSmith, Bjellerup, et al., 1953ALS
Quantity Value Units Method Reference Comment
solid,1 bar56.72cal/mol*KN/ARakhmenkulov, Gutov, et al., 1975Entropy estimated at 13 K to be 3.10 J/mol*K.; DH

Constant pressure heat capacity of solid

Cp,solid (cal/mol*K) Temperature (K) Reference Comment
47.380298.15Rakhmenkulov, Gutov, et al., 1975T = 13.7 to 360 K.; DH
52.10298.5Seki and Momotani, 1950T = 295 to 351 K. Unsmoothed experimental datum.; DH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Tetrachloroethylene + Chlorine = Ethane, hexachloro-

By formula: C2Cl4 + Cl2 = C2Cl6

Quantity Value Units Method Reference Comment
Δr-36.70 ± 0.60kcal/molCmKirkbride, 1956liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -37. kcal/mol

Ethane, hexachloro- = Tetrachloroethylene + Chlorine

By formula: C2Cl6 = C2Cl4 + Cl2

Quantity Value Units Method Reference Comment
Δr31.7 ± 1.0kcal/molEqkPuyo, Balesdent, et al., 1963gas phase

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Manion, 2002
Manion, J.A., Evaluated Enthalpies of Formation of the Stable Closed Shell C1 and C2 Chlorinated Hydrocarbons, J. Phys. Chem. Ref. Data, 2002, 31, 1, 123-172, https://doi.org/10.1063/1.1420703 . [all data]

Puyo, Balesdent, et al., 1963
Puyo, J.; Balesdent, D.; Niclause, M.; Dzierzynski, M., Etude analytique et thermodynamique de la pyrolyse de l'hexachloroethane en phase gazeuse., Compt. Rend., 1963, 256, 3471-3473. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Smith, Bjellerup, et al., 1953
Smith, L.; Bjellerup, L.; Krook, S.; Westermark, H., Heats of combustion of organic chloro compounds determined by the "quartz wool" method, Acta Chem. Scand., 1953, 7, 65. [all data]

Rakhmenkulov, Gutov, et al., 1975
Rakhmenkulov, S.S.; Gutov, S.A.; Paukov, I.E., The heat capacity of hexachloroethane in the temperature range 13.7-360 K and the temperatures and enthalpies of its phase transition, Zhur. Fiz. Khim., 1975, 49, 2722. [all data]

Seki and Momotani, 1950
Seki, S.; Momotani, M., Heats of transition of hexachloroethane, Bull. Chem. Soc. Japan, 1950, 23, 30-31. [all data]

Kirkbride, 1956
Kirkbride, F.W., The heats of chlorination of some hydrocarbons and their chloro-derivatives, J. Appl. Chem., 1956, 6, 11-21. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References