Dimethyl Sulfoxide
- Formula: C2H6OS
- Molecular weight: 78.133
- IUPAC Standard InChIKey: IAZDPXIOMUYVGZ-UHFFFAOYSA-N
- CAS Registry Number: 67-68-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: DMSO; Methane, sulfinylbis-; Methyl sulfoxide; Demsodrox; Dimexide; Dipirartril-tropico; Dolicur; Dromisol; Durasorb; DMS 70; DMS 90; Hyadur; Infiltrina; Somipront; Sulfinylbismethane; SQ 9453; Dimethyl sulphoxide; (CH3)2SO; A 10846; Deltan; Demasorb; Demavet; Demeso; Dermasorb; Doligur; Domoso; Gamasol 90; M 176; Methylsulfinylmethane; Rimso 50; Syntexan; NSC-763; Topsym; Dimethyl sulfur oxide; Herpid; Kemsol; Sclerosol; Sulfoxide, dimethyl; Methane, 1,1'-sulfinylbis-; DMSO (methyl sulfoxide); Sulphinylbis methane
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -35.97 ± 0.36 | kcal/mol | Ccr | Masuda, Nagano, et al., 1994 | H2SO4 (1:115 H2O) |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C2H5OS- + =
By formula: C2H5OS- + H+ = C2H6OS
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 373.5 ± 2.1 | kcal/mol | G+TS | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 374.3 ± 2.3 | kcal/mol | G+TS | Cumming and Kebarle, 1978 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 366.4 ± 2.0 | kcal/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 367.2 ± 2.0 | kcal/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; B |
By formula: NO2- + C2H6OS = (NO2- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 19.2 ± 1.0 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25. | cal/mol*K | N/A | Sieck, 1985 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.7 ± 1.0 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
8.7 | 420. | PHPMS | Sieck, 1985 | gas phase; Entropy change calculated or estimated; M |
By formula: C6H5NO2- + C2H6OS = (C6H5NO2- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.80 ± 0.10 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 24.5 | cal/mol*K | PHPMS | Sieck, 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 9.50 ± 0.20 | kcal/mol | TDAs | Sieck, 1985 | gas phase; B |
ΔrG° | 8.6 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
By formula: C7H7NO3- + C2H6OS = (C7H7NO3- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.3 ± 2.0 | kcal/mol | N/A | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.5 | cal/mol*K | PHPMS | Chowdhury, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 8.4 ± 2.0 | kcal/mol | TDAs | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
By formula: Br- + C2H6OS = (Br- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 17.30 | kcal/mol | TDAs | Magnera, Caldwell, et al., 1984 | gas phase; B,M |
ΔrH° | 17.2 | kcal/mol | HPMS | Caldwell, Masucci, et al., 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.4 | cal/mol*K | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 10.90 | kcal/mol | TDAs | Magnera, Caldwell, et al., 1984 | gas phase; B |
By formula: I- + C2H6OS = (I- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.70 | kcal/mol | TDAs | Magnera, Caldwell, et al., 1984 | gas phase; B,M |
ΔrH° | 16. | kcal/mol | PHPMS | Caldwell, Masucci, et al., 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 21.7 | cal/mol*K | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 9.20 | kcal/mol | TDAs | Magnera, Caldwell, et al., 1984 | gas phase; B |
C7H4F3NO2- + = (C7H4F3NO2- • )
By formula: C7H4F3NO2- + C2H6OS = (C7H4F3NO2- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.6 ± 2.0 | kcal/mol | N/A | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.3 | cal/mol*K | PHPMS | Chowdhury, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 7.1 ± 2.0 | kcal/mol | TDAs | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
By formula: Cl- + C2H6OS = (Cl- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 18.60 | kcal/mol | TDAs | Magnera, Caldwell, et al., 1984 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 20.4 | cal/mol*K | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 12.50 | kcal/mol | TDAs | Magnera, Caldwell, et al., 1984 | gas phase; B |
By formula: C2H7OS+ + C2H6OS = (C2H7OS+ • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 30.8 | kcal/mol | PHPMS | Lau, Saluja, et al., 1980 | gas phase; switching reaction((CH3)2SOH+)(CH3)2CO; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.9 | cal/mol*K | PHPMS | Lau, Saluja, et al., 1980 | gas phase; switching reaction((CH3)2SOH+)(CH3)2CO; M |
(C2H7OS+ • ) + = (C2H7OS+ • 2)
By formula: (C2H7OS+ • C2H6OS) + C2H6OS = (C2H7OS+ • 2C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 21.3 | kcal/mol | PHPMS | Lau, Saluja, et al., 1980 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 10.9 | cal/mol*K | PHPMS | Lau, Saluja, et al., 1980 | gas phase; Entropy change is questionable; M |
By formula: (K+ • 4C2H6OS) + C2H6OS = (K+ • 5C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.8 | kcal/mol | HPMS | Sunner, 1984 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 37. | cal/mol*K | HPMS | Sunner, 1984 | gas phase; Entropy change is questionable; M |
By formula: (K+ • 5C2H6OS) + C2H6OS = (K+ • 6C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.5 | kcal/mol | HPMS | Sunner, 1984 | gas phase; Entropy change is questionable; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 40. | cal/mol*K | HPMS | Sunner, 1984 | gas phase; Entropy change is questionable; M |
By formula: C6H4FNO2- + C2H6OS = (C6H4FNO2- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 7.9 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
7.9 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H4FNO2- + C2H6OS = (C6H4FNO2- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 8.2 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
8.2 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
C6H4ClNO2- + = (C6H4ClNO2- • )
By formula: C6H4ClNO2- + C2H6OS = (C6H4ClNO2- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 7.5 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
7.5 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H4FNO2- + C2H6OS = (C6H4FNO2- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 7.8 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
7.8 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
C6H4ClNO2- + = (C6H4ClNO2- • )
By formula: C6H4ClNO2- + C2H6OS = (C6H4ClNO2- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 7.8 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
7.8 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
C6H4ClNO2- + = (C6H4ClNO2- • )
By formula: C6H4ClNO2- + C2H6OS = (C6H4ClNO2- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 7.6 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
7.6 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H4N2O4- + C2H6OS = (C6H4N2O4- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 4.4 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
4.4 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H4N2O4- + C2H6OS = (C6H4N2O4- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 6.2 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
6.2 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H4N2O4- + C2H6OS = (C6H4N2O4- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 5.9 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
5.9 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C7H7NO2- + C2H6OS = (C7H7NO2- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 8.6 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
8.6 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6F4O2- + C2H6OS = (C6F4O2- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 4.5 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
4.5 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H4O2- + C2H6OS = (C6H4O2- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 6.2 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
6.2 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C7H4N2O2- + C2H6OS = (C7H4N2O2- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 6.8 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
6.8 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: K+ + C2H6OS = (K+ • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.1 | kcal/mol | CIDT | Klassen, Anderson, et al., 1996 | RCD |
ΔrH° | 35. | kcal/mol | HPMS | Sunner, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 31. | cal/mol*K | HPMS | Sunner, 1984 | gas phase; M |
By formula: C4H2O3- + C2H6OS = (C4H2O3- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 6.7 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
6.7 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C7H4N2O2- + C2H6OS = (C7H4N2O2- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 6.6 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
6.6 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: 2C2H6S + O2 = 2C2H6OS
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -66.36 ± 0.20 | kcal/mol | Cm | Douglas, 1946 | liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -66.5 ± 0.2 kcal/mol; At 291°K; ALS |
By formula: C2H6O2S = C2H6OS + 0.5O2
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 58.16 ± 0.20 | kcal/mol | Cm | Douglas, 1946 | liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = 59.0 ± 0.2 kcal/mol; At 291°K; ALS |
By formula: (Cl- • 2C2H6OS) + C2H6OS = (Cl- • 3C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.9 | kcal/mol | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 29.8 | cal/mol*K | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
By formula: (Cl- • 3C2H6OS) + C2H6OS = (Cl- • 4C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.6 | kcal/mol | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 37.2 | cal/mol*K | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
By formula: (Cl- • 4C2H6OS) + C2H6OS = (Cl- • 5C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.8 | kcal/mol | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 40.2 | cal/mol*K | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
By formula: (I- • 2C2H6OS) + C2H6OS = (I- • 3C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.6 | kcal/mol | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 25.1 | cal/mol*K | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
By formula: (Br- • 2C2H6OS) + C2H6OS = (Br- • 3C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.6 | kcal/mol | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27.5 | cal/mol*K | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
By formula: (Cl- • C2H6OS) + C2H6OS = (Cl- • 2C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.0 | kcal/mol | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 23.8 | cal/mol*K | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
By formula: (I- • C2H6OS) + C2H6OS = (I- • 2C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.8 | kcal/mol | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.0 | cal/mol*K | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
By formula: (Br- • C2H6OS) + C2H6OS = (Br- • 2C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.5 | kcal/mol | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 22.4 | cal/mol*K | PHPMS | Magnera, Caldwell, et al., 1984 | gas phase; M |
By formula: Na+ + C2H6OS = (Na+ • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 31.1 | kcal/mol | CID | Klassen, Anderson, et al., 1996 | RCD |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
31.0 | 298. | IMRE | McMahon and Ohanessian, 2000 | Anchor alanine=39.89; RCD |
By formula: (K+ • 2C2H6OS) + C2H6OS = (K+ • 3C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 20. | kcal/mol | HPMS | Sunner, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 28. | cal/mol*K | HPMS | Sunner, 1984 | gas phase; M |
By formula: (K+ • 3C2H6OS) + C2H6OS = (K+ • 4C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16. | kcal/mol | HPMS | Sunner, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30. | cal/mol*K | HPMS | Sunner, 1984 | gas phase; M |
By formula: (K+ • C2H6OS) + C2H6OS = (K+ • 2C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 29. | kcal/mol | HPMS | Sunner, 1984 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 34. | cal/mol*K | HPMS | Sunner, 1984 | gas phase; M |
By formula: C7H4N2O2- + C2H6OS = (C7H4N2O2- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.0 | kcal/mol | PHPMS | Chowdhury, 1987 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 33.6 | cal/mol*K | PHPMS | Chowdhury, 1987 | gas phase; M |
By formula: C6H4NO3- + C2H6OS = (C6H4NO3- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 7.4 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
By formula: C6H4NO3- + C2H6OS = (C6H4NO3- • C2H6OS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 5.9 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
+ = C12H12O3S-
By formula: C10H6O2- + C2H6OS = C12H12O3S-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 5.7 ± 1.6 | kcal/mol | IMRE | Chowdhury, Grimsrud, et al., 1987 | gas phase; Free energy affinity at 70°C.; B |
By formula: F6S- + C2H6OS = (F6S- • C2H6OS)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
7.2 | 308. | PHPMS | Knighton, Zook, et al., 1990 | gas phase; M |
By formula: C7F14- + C2H6OS = (C7F14- • C2H6OS)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
7.7 | 308. | PHPMS | Knighton, Zook, et al., 1990 | gas phase; M |
By formula: C10H6O2- + C2H6OS = (C10H6O2- • C2H6OS)
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
5.7 | 343. | PHPMS | Chowdhury, 1987 | gas phase; M |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compiled by: Coblentz Society, Inc.
- LIQUID (NEAT); BECKMAN IR-7 (GRATING); DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
- LIQUID (NEAT); PERKIN-ELMER 180; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
- SOLUTION (10% IN CCl4 FOR 4000-1330 CM-1, 10% IN CS2 FOR 1330-600 CM-1); BECKMAN IR-7 (GRATING); DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
- SOLUTION (10.75% IN CCl4 FOR 3800-1300, 2.24% IN CS2 FOR 1300-620, AND 10.75% IN CCl4 FOR 620-250 CM-1) VERSUS SOLVENT; Not specified, most likely a grating or hybrid spectrometer.; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center, 1990. |
NIST MS number | 118614 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Methyl Silicone | 100. | 780. | Huber, Kenndler, et al., 1993 | H2; Column length: 5. m; Phase thickness: 2.65 μm |
Capillary | Methyl Silicone | 120. | 784. | Huber, Kenndler, et al., 1993 | H2; Column length: 5. m; Phase thickness: 2.65 μm |
Capillary | Methyl Silicone | 80. | 777. | Huber, Kenndler, et al., 1993 | H2; Column length: 5. m; Phase thickness: 2.65 μm |
Kovats' RI, polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | PEG-20M | 130. | 1569. | Huber, Kenndler, et al., 1993 | Column length: 10. m; Phase thickness: 1.33 μm |
Capillary | PEG-20M | 150. | 1584. | Huber, Kenndler, et al., 1993 | Column length: 10. m; Phase thickness: 1.33 μm |
Capillary | PEG-20M | 130. | 1569.1 | Huber, Kenndler, et al., 1993 | Column length: 10. m; Phase thickness: 1.33 μm |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-1 | 782. | Hancock and Peters, 1991 | He, 50. C @ 2. min, 10. K/min; Column length: 15. m; Column diameter: 0.53 mm |
Capillary | DB-5 | 820.1 | Hancock and Peters, 1991 | He, 50. C @ 2. min, 10. K/min; Column length: 15. m; Column diameter: 0.53 mm |
Capillary | DB-5 | 820.5 | Hancock and Peters, 1991 | He, 50. C @ 2. min, 10. K/min; Column length: 15. m; Column diameter: 0.53 mm |
Capillary | DB-5 | 829.2 | Hancock and Peters, 1991 | He, 50. C @ 2. min, 10. K/min; Column length: 15. m; Column diameter: 0.53 mm |
Capillary | DB-1 | 786.6 | D'Agostino and Provost, 1985 | 15. m/0.32 mm/0.25 μm, He, 50. C @ 2. min, 10. K/min, 300. C @ 5. min |
Van Den Dool and Kratz RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Stabilwax | 1560. | Cros, Lignot, et al., 2005 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min, 240. C @ 10. min |
Capillary | Stabilwax | 1560. | Cros, Vandanjon, et al., 2003 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 3. K/min, 240. C @ 10. min |
Capillary | Supelcowax-10 | 1563. | Chung, 1999 | 60. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min |
Capillary | DB-Wax | 1582.3 | D'Agostino and Provost, 1985 | 15. m/0.32 mm/0.25 μm, He, 50. C @ 2. min, 10. K/min, 250. C @ 5. min |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | OV-101 | 790. | Zenkevich, 2005 | 25. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C |
Capillary | HP-1 | 772. | Valette, Fernandez, et al., 2003 | 50. m/0.2 mm/0.5 μm, He, 2. K/min, 220. C @ 40. min; Tstart: 60. C |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | CP-Sil5 CB MS | 780. | Iraqi, Vermeulen, et al., 2005 | 50. m/0.32 mm/1.2 μm; Program: 36C(2min) => 20C/min => 85C => 1C/min => 145C => 3C/min => 250C(30min) |
Capillary | SPB-5 | 827. | Begnaud, Pérès, et al., 2003 | 60. m/0.32 mm/1. μm; Program: not specified |
Capillary | SPB-1 | 784. | Flanagan, Streete, et al., 1997 | 60. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C |
Capillary | SPB-1 | 784. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C |
Capillary | OV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc. | 787. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
Normal alkane RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | HP-Innowax | 1603. | Puvipirom and Chaisei, 2012 | 15. m/0.32 mm/0.50 μm, Helium, 3. K/min; Tstart: 40. C; Tend: 250. C |
Capillary | HP-Innowax | 1582. | Soria, Sanz, et al., 2008 | 50. m/0.20 mm/0.20 μm, Helium, 45. C @ 2. min, 4. K/min, 190. C @ 50. min |
Capillary | Stabilwax | 1560. | Cros, Vandanjon, et al., 2007 | 60. m/0.25 mm/0.25 μm, Helium, 40. C @ 5. min, 3. K/min, 240. C @ 10. min |
Capillary | RTX-Wax | 1569. | Prososki, Etzel, et al., 2007 | 30. m/0.25 mm/0.5 μm, He, 40. C @ 5. min, 10. K/min, 220. C @ 10. min |
Capillary | HP-Innowax | 1596. | Soria, Gonzalez, et al., 2004 | 50. m/0.2 mm/0.2 μm, He, 45. C @ 2. min, 4. K/min, 190. C @ 50. min |
Capillary | Stabilwax | 1560. | Cros, Vandanjon, et al., 2003, 2 | 60. m/0.25 mm/0.25 μm, Helium, 40. C @ 5. min, 3. K/min, 240. C @ 10. min |
Capillary | DB-Wax | 1553. | Wei, Mura, et al., 2001 | 60. m/0.25 mm/0.25 μm, He, 2. K/min; Tstart: 40. C; Tend: 200. C |
Capillary | DB-Wax | 1595. | Iwatsuki, Mizota, et al., 1999 | 4. K/min; Column length: 30. m; Column diameter: 0.53 mm; Tstart: 60. C; Tend: 210. C |
Normal alkane RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | SOLGel-Wax | 1576. | Johanningsmeier and McFeeters, 2011 | 30. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min) |
Capillary | SOLGel-Wax | 1582. | Johanningsmeier and McFeeters, 2011 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | DB-FFAP | 1553. | Mebazaa, Mahmoudi, et al., 2009 | 30. m/0.25 mm/0.25 μm, Helium; Program: 50 0C 2 0C/min -> 100 0C (5 min) 5 0C/min -> 250 0C |
Capillary | DB-FFAP | 1549. | Mebazaa, Mahmoudi, et al., 2009 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | CP-Wax 52 CB | 1550. | Kaack and Christensen, 2008 | 50. m/0.25 mm/0.29 μm, Helium; Program: 33 0C (1 min) 2 0C/min -> 130 0C 10 0C/min -> 220 0C |
Capillary | DB-Wax | 1579. | Kim. J.H., Ahn, et al., 2004 | 60. m/0.25 mm/0.25 μm, Helium; Program: 60 0C (3 min) 2 0C/min -> 150 0C 4 0C/min -> 200 0C |
Capillary | Carbowax 20M | 1554. | Vinogradov, 2004 | Program: not specified |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Masuda, Nagano, et al., 1994
Masuda, N.; Nagano, Y.; Sakiyama, M.,
Standard molar enthalpy of formation of (CH3)2SO, dimethylsulfoxide, by combustion calorimetry,
J. Chem. Thermodyn., 1994, 26, 971-975. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Sieck, 1985
Sieck, L.W.,
Thermochemistry of Solvation of NO2- and C6H5NO2- by Polar Molecules in the Vapor Phase. Comparison with Cl- and Variation with Ligand Structure.,
J. Phys. Chem., 1985, 89, 25, 5552, https://doi.org/10.1021/j100271a049
. [all data]
Chowdhury, Grimsrud, et al., 1987
Chowdhury, S.; Grimsrud, E.P.; Kebarle, P.,
Bonding of Charged Delocalized Anions to Protic and Dipolar Aprotic Solvent Molecules,
J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021
. [all data]
Chowdhury, 1987
Chowdhury, S. Grimsrud,
Bonding of Charge Delocalized Anions to Protic and Dipolar Aprotic Solvents,
J. Phys. Chem., 1987, 91, 10, 2551, https://doi.org/10.1021/j100294a021
. [all data]
Magnera, Caldwell, et al., 1984
Magnera, T.F.; Caldwell, G.; Sumner, J.; Ikuta, S.; Kebarle, P.,
Solvation of the halide anions in dimethyl sulfoxide. Factors involved in enhanced reactivity of negative ions in dipolar aprotic solvents,
J. Am. Chem. Soc., 1984, 106, 6140. [all data]
Caldwell, Masucci, et al., 1989
Caldwell, G.W.; Masucci, J.A.; Ikonomou, M.G.,
Negative Ion Chemical Ionization Mass Spectrometry - Binding of Molecules to Bromide and Iodide Anions,
Org. Mass Spectrom., 1989, 24, 1, 8, https://doi.org/10.1002/oms.1210240103
. [all data]
Lau, Saluja, et al., 1980
Lau, Y.K.; Saluja, P.P.S.; Kebarle, P.,
The Proton in Dimethyl Sulfoxide and Acetone. Results from Gas - Phase Ion Equilibria Involving (Me2SO)nH+ and (Me2CO)nH+,
J. Am. Chem. Soc., 1980, 102, 25, 7429, https://doi.org/10.1021/ja00545a004
. [all data]
Sunner, 1984
Sunner, J. Kebarle,
Ion - Solvent Molecule Interactions in the Gas Phase. The Potassium Ion and Me2SO, DMA, DMF, and Acetone,
J. Am. Chem. Soc., 1984, 106, 21, 6135, https://doi.org/10.1021/ja00333a002
. [all data]
Klassen, Anderson, et al., 1996
Klassen, J.S.; Anderson, S.G.; Blades, A.T.; Kebarle, P.,
Reaction Enthalpies for M+L = M+ + L, Where M+ = Na+ and K+ and L = Acetamide, N-Methylacetamide, N,N-Dimethylacetamide, Glycine, and Glycylglycine, from Determinations of the Collision-Induced Dissociation Thresholds,
J. Phys. Chem., 1996, 100, 33, 14218, https://doi.org/10.1021/jp9608382
. [all data]
Douglas, 1946
Douglas, T.B.,
Heats of formation of liquid methyl sulfoxide and crystalline methyl sulfone at 18°,
J. Am. Chem. Soc., 1946, 68, 1072-1076. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G.,
An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions,
Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7
. [all data]
Knighton, Zook, et al., 1990
Knighton, W.B.; Zook, D.R.; Grimsrud, E.P.,
Cluster-Assisted Decomposition Reactions of the Molecular Anions of SF6 and C7F14,
J. Am. Soc. Mass Spectrom., 1990, 1, 5, 372, https://doi.org/10.1016/1044-0305(90)85017-G
. [all data]
Huber, Kenndler, et al., 1993
Huber, J.F.K.; Kenndler, E.; Reich, G.; Hack, W.; Wolf, J.,
Optimal Selection of Gas Chromatographic Columns for the Analytical Control of Chemical Warfare Agents by Application of Information Theory to Retention Data,
Anal. Chem., 1993, 65, 20, 2903-2906, https://doi.org/10.1021/ac00068a031
. [all data]
Hancock and Peters, 1991
Hancock, J.R.; Peters, G.R.,
Retention index monitoring of compounds of chemical defence interest using thermal desorption gas chromatography,
J. Chromatogr., 1991, 538, 2, 249-257, https://doi.org/10.1016/S0021-9673(01)88845-2
. [all data]
D'Agostino and Provost, 1985
D'Agostino, P.A.; Provost, L.R.,
Gas chromatographic retention indices of chemical warfare agents and simulants,
J. Chromatogr., 1985, 331, 47-54, https://doi.org/10.1016/0021-9673(85)80005-4
. [all data]
Cros, Lignot, et al., 2005
Cros, S.; Lignot, B.; Bourseau, P.; Jaouen, P.; Prost, C.,
Desalination of mussel cooking juices by electrodialysis: effect on the aroma profile,
J. Food Eng., 2005, 69, 4, 425-436, https://doi.org/10.1016/j.jfoodeng.2004.08.036
. [all data]
Cros, Vandanjon, et al., 2003
Cros, S.; Vandanjon, L.; Jaouen, P.; Bourseau, P.,
Processing of industrial mussel cooking juices by reverse osmosis: pollution abatement and aromas recovery, 2003, retrieved from http://www.membrane.unsw.edu.au/imstec03/content/papers/DAI/imstec064.pdf. [all data]
Chung, 1999
Chung, H.Y.,
Volatile components in crabmeats of Charybdis feriatus,
J. Agric. Food Chem., 1999, 47, 6, 2280-2287, https://doi.org/10.1021/jf981027t
. [all data]
Zenkevich, 2005
Zenkevich, I.G.,
Experimentally measured retention indices., 2005. [all data]
Valette, Fernandez, et al., 2003
Valette, L.; Fernandez, X.; Poulain, S.; Loiseau, A.-M.; Lizzani-Cuvelier, L.; Levieil, R.; Restier, L.,
Volatile constituents from Romanesco cauliflower,
Food Chem., 2003, 80, 3, 353-358, https://doi.org/10.1016/S0308-8146(02)00272-8
. [all data]
Iraqi, Vermeulen, et al., 2005
Iraqi, R.; Vermeulen, C.; Benzekri, A.; Bouseta, A.; Collin, S.,
Screening for key odorants in Moroccan green olives by gas chromatography-olfactometry/aroma extract dilution analysis,
J. Agric. Food Chem., 2005, 53, 4, 1179-1184, https://doi.org/10.1021/jf040349w
. [all data]
Begnaud, Pérès, et al., 2003
Begnaud, F.; Pérès, C.; Berdagué, J.-L.,
Characterization of volatile effluents of livestock buildings by solid-phase microextraction,
Int. J. Environ. Anal. Chem., 2003, 83, 10, 837-849, https://doi.org/10.1080/03067310310001603349
. [all data]
Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D.,
Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]
Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J.,
Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning,
Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111
. [all data]
Waggott and Davies, 1984
Waggott, A.; Davies, I.W.,
Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]
Puvipirom and Chaisei, 2012
Puvipirom, J.; Chaisei, S.,
Contribution of roasted grains and seeds in aroma of oleang (Thai coffee drink),
Int. Food Res. J., 2012, 19, 2, 583-588. [all data]
Soria, Sanz, et al., 2008
Soria, A.C.; Sanz, J.; Martinez-Castro, I.,
SPME followed by GC-MS: a powerful technique for qualitative analysis of honey volatiles,
Eur. Food Res. Technol., 2008, 1-12. [all data]
Cros, Vandanjon, et al., 2007
Cros, S.; Vandanjon, L.; Jaouen, P.; Bourseau, P.,
Processing of Industrial Mussel Cooking Juices by Reverse Osmotis: Pollution Abatement and Aromas Recovery, 2007, retrieved from title of Internet file: [imstec064]. [all data]
Prososki, Etzel, et al., 2007
Prososki, R.A.; Etzel, M.R.; Rankin, S.A.,
Solvent type affects the number, distribution, and relative quantities of volatile compounds found in sweet whey powder,
J. Dairy Sci., 2007, 90, 2, 523-531, https://doi.org/10.3168/jds.S0022-0302(07)71535-7
. [all data]
Soria, Gonzalez, et al., 2004
Soria, A.C.; Gonzalez, M.; de Lorenzo, C.; Martinez-Castro, I.; Sanza, J.,
Characterization of artisanal honeys from Madrid (Central Spain) on the basis of their melissopalynological, physicochemical and volatile composition data,
Food Chem., 2004, 85, 1, 121-130, https://doi.org/10.1016/j.foodchem.2003.06.012
. [all data]
Cros, Vandanjon, et al., 2003, 2
Cros, S.; Vandanjon, L.; Jaouen, P.; Bourseau, P.,
IMSTEC'03 Conference Proceedings, Processing of industrial mussel cooking juices by reverse osmosis: pollution abatement and aromas recovery, Universoty of New South Wales, Sydney, Australia, 2003, 6. [all data]
Wei, Mura, et al., 2001
Wei, A.; Mura, K.; Shibamoto, T.,
Antioxidative activity of volatile chemicals extracted from beer,
J. Agric. Food Chem., 2001, 49, 8, 4097-4101, https://doi.org/10.1021/jf010325e
. [all data]
Iwatsuki, Mizota, et al., 1999
Iwatsuki, K.; Mizota, Y.; Kubota, T.; Nishimura, O.; Masuda, H.; Sotoyama, K.; Tomita, M.,
Aroma extract dilution analysis. Evluation of aroma of pasteurized and UHT processed milk by aroma extract dilution analysis,
Nippon Shokuhin Kagaku Kogaku Kaishi, 1999, 46, 9, 587-597, https://doi.org/10.3136/nskkk.46.587
. [all data]
Johanningsmeier and McFeeters, 2011
Johanningsmeier, S.D.; McFeeters, R.F.,
Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGCxTOFMS),
J. Food Sci., 2011, 76, 1, c168-c177, https://doi.org/10.1111/j.1750-3841.2010.01918.x
. [all data]
Mebazaa, Mahmoudi, et al., 2009
Mebazaa, R.; Mahmoudi, A.; Fouchet, M.; Dos Santos, M.; Kamissoko, F.; Nafti, A.; Ben Cheikh, R.; Rega, B.; Camel, V.,
Characterization of volatile compounds in Tunisian fenugreek seeds,
Food Chem., 2009, 115, 4, 1326-1336, https://doi.org/10.1016/j.foodchem.2009.01.066
. [all data]
Kaack and Christensen, 2008
Kaack, K.; Christensen, L.P.,
Effect of packing materials and storage time on volatile compounds in tea processes from flowers of black elder (Sambucus nigra L.),
Eur. Food Res. Technol., 2008, 227, 4, 1259-1273, https://doi.org/10.1007/s00217-008-0844-8
. [all data]
Kim. J.H., Ahn, et al., 2004
Kim. J.H.; Ahn, H.J.; Yook, H.S.; Kim, K.S.; Rhee, M.S.; Ryu, G.H.; Byun, M.W.,
Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce,
Radiation Phys. Chem., 2004, 69, 2, 179-187, https://doi.org/10.1016/S0969-806X(03)00400-6
. [all data]
Vinogradov, 2004
Vinogradov, B.A.,
Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References
- Symbols used in this document:
T Temperature ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.