Acetone
- Formula: C3H6O
- Molecular weight: 58.0791
- IUPAC Standard InChIKey: CSCPPACGZOOCGX-UHFFFAOYSA-N
- CAS Registry Number: 67-64-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: 2-Propanone; β-Ketopropane; Dimethyl ketone; Dimethylformaldehyde; Methyl ketone; Propanone; Pyroacetic ether; (CH3)2CO; Dimethylketal; Ketone propane; Ketone, dimethyl-; Chevron acetone; Rcra waste number U002; UN 1090; Sasetone; Propan-2-one; NSC 135802
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Condensed phase thermochemistry data
- Phase change data
- Reaction thermochemistry data: reactions 1 to 50, reactions 51 to 85
- Henry's Law data
- Gas phase ion energetics data
- Ion clustering data
- IR Spectrum
- Mass spectrum (electron ionization)
- UV/Visible spectrum
- Vibrational and/or electronic energy levels
- Gas Chromatography
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -218.5 ± 0.59 | kJ/mol | Cm | Wiberg, Crocker, et al., 1991 | ALS |
ΔfH°gas | -217.1 ± 0.50 | kJ/mol | Cm | Chao and Zwolinski, 1976 | ALS |
ΔfH°gas | -217.5 ± 0.67 | kJ/mol | Eqk | Buckley and Herington, 1965 | ALS |
ΔfH°gas | -216.4 | kJ/mol | Cm | Pennington and Kobe, 1957 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -1821.4 ± 0.84 | kJ/mol | Ccb | Miles and Hunt, 1941 | Corresponding ΔfHºgas = -216.6 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
51.73 | 100. | Chao J., 1986 | p=1 bar. Recommended values agree with results of statistical calculations [ Pennington R.E., 1957, Chao J., 1976] within 0.5-2.8 J/mol*K.; GT |
56.18 | 150. | ||
61.20 | 200. | ||
71.09 | 273.15 | ||
75.02 ± 0.11 | 298.15 | ||
75.32 | 300. | ||
92.06 | 400. | ||
108.08 | 500. | ||
122.20 | 600. | ||
134.43 | 700. | ||
145.00 | 800. | ||
154.15 | 900. | ||
162.09 | 1000. | ||
168.96 | 1100. | ||
174.92 | 1200. | ||
180.09 | 1300. | ||
184.58 | 1400. | ||
188.49 | 1500. |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
80.58 ± 0.81 | 332.6 | Chao J., 1976 | Experimental data [ Vilcu R., 1975] differ substantially from data selected here. Their correctness seems to be doubtful (see [ Kabo G.J., 1995]). Please also see Bennewitz K., 1938, Collins B.T., 1949, Pennington R.E., 1957.; GT |
80.96 ± 0.81 | 334. | ||
81.50 ± 0.16 | 338.2 | ||
83.35 ± 0.83 | 347.8 | ||
83.39 ± 0.83 | 348. | ||
87.03 ± 0.87 | 363. | ||
87.19 ± 0.17 | 371.2 | ||
87.53 ± 0.88 | 372.3 | ||
89.24 ± 0.89 | 378. | ||
91.84 ± 0.92 | 393. | ||
92.93 ± 0.19 | 405.2 | ||
94.18 ± 0.94 | 408. | ||
93.30 | 410. | ||
96.8 ± 1.9 | 422.6 | ||
99.4 ± 2.0 | 428. | ||
100.5 ± 2.0 | 438. | ||
98.66 ± 0.20 | 439.2 |
References
Go To: Top, Gas phase thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Wiberg, Crocker, et al., 1991
Wiberg, K.B.; Crocker, L.S.; Morgan, K.M.,
Thermochemical studies of carbonyl compounds. 5. Enthalpies of reduction of carbonyl groups,
J. Am. Chem. Soc., 1991, 113, 3447-3450. [all data]
Chao and Zwolinski, 1976
Chao, J.; Zwolinski, B.J.,
Ideal gas thermodynamic properties of propanone and 2-butanone,
J. Phys. Chem. Ref. Data, 1976, 5, 319-328. [all data]
Buckley and Herington, 1965
Buckley, E.; Herington, E.F.G.,
Equilibria in some secondary alcohol + hydrogen + ketone systems,
Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]
Pennington and Kobe, 1957
Pennington, R.E.; Kobe, K.A.,
The thermodynamic properties of acetone,
J. Am. Chem. Soc., 1957, 79, 300-305. [all data]
Miles and Hunt, 1941
Miles, C.B.; Hunt, H.,
Heats of combustion. I. The heat of combustion of acetone,
J. Phys. Chem., 1941, 45, 1346-1359. [all data]
Chao J., 1986
Chao J.,
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties,
J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]
Pennington R.E., 1957
Pennington R.E.,
The thermodynamic properties of acetone,
J. Am. Chem. Soc., 1957, 79, 300-305. [all data]
Chao J., 1976
Chao J.,
Ideal gas thermodynamic properties of propanone and 2-butanone,
J. Phys. Chem. Ref. Data, 1976, 5, 319-328. [all data]
Vilcu R., 1975
Vilcu R.,
Determination of heat capacities of some alcohols and ketones in vapor phase,
Rev. Roum. Chim., 1975, 20, 603-609. [all data]
Kabo G.J., 1995
Kabo G.J.,
Thermodynamic properties, conformation, and phase transitions of cyclopentanol,
J. Chem. Thermodyn., 1995, 27, 953-967. [all data]
Bennewitz K., 1938
Bennewitz K.,
Molar heats of vapor organic compounds,
Z. Phys. Chem. (Leipzig), 1938, B39, 126-144. [all data]
Collins B.T., 1949
Collins B.T.,
The heat capacity of organic vapors. VI. Acetone,
J. Am. Chem. Soc., 1949, 71, 2929-2930. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.