Isopropyl Alcohol
- Formula: C3H8O
- Molecular weight: 60.0950
- IUPAC Standard InChIKey: KFZMGEQAYNKOFK-UHFFFAOYSA-N
- CAS Registry Number: 67-63-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: 2-Propanol; sec-Propyl Alcohol; Alcojel; Alcosolve 2; Avantin; Avantine; Combi-Schutz; Dimethylcarbinol; Hartosol; Imsol A; Isohol; Isopropanol; Lutosol; Petrohol; Propol; PRO; Takineocol; 1-Methylethyl Alcohol; iso-C3H7OH; 2-Hydroxypropane; Propane, 2-hydroxy-; sec-Propanol; Propan-2-ol; i-Propylalkohol; Alcolo; Alcool isopropilico; Alcool isopropylique; Alkolave; Arquad DMCB; iso-Propylalkohol; Isopropyl alcohol, rubbing; IPA; Lavacol; Visco 1152; Alcosolve; i-Propanol; 2-Propyl alcohol; Spectrar; Sterisol hand disinfectant; UN 1219; n-Propan-2-ol; 1-methylethanol; Propanol-2; Virahol; IPS 1
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -65.19 | kcal/mol | Eqk | Buckley and Herington, 1965 | ALS |
ΔfH°gas | -64.79 | kcal/mol | N/A | Chao and Rossini, 1965 | Value computed using ΔfHliquid° value of -317.0±0.3 kj/mol from Chao and Rossini, 1965 and ΔvapH° value of 45.9 kj/mol from Snelson and Skinner, 1961.; DRB |
ΔfH°gas | -65.07 ± 0.22 | kcal/mol | Ccb | Snelson and Skinner, 1961 | ALS |
ΔfH°gas | -65.20 | kcal/mol | N/A | Parks, Mosley, et al., 1950 | Value computed using ΔfHliquid° value of -318.7 kj/mol from Parks, Mosley, et al., 1950 and ΔvapH° value of 45.9 kj/mol from Snelson and Skinner, 1961.; DRB |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
8.442 | 50. | Thermodynamics Research Center, 1997 | p=1 bar. Discrepancies with other statistically calculated values [ Green J.H.S., 1963] and [51KOB] increase at high temperatures up to 5 and 9 J/mol*K, respectively, in Cp(T). There is a good agreement with results [ Chao J., 1986]. Please also see Chao J., 1986, 2.; GT |
11.00 | 100. | ||
13.86 | 150. | ||
16.32 | 200. | ||
20.01 | 273.15 | ||
21.35 ± 0.036 | 298.15 | ||
21.45 | 300. | ||
26.804 | 400. | ||
31.539 | 500. | ||
35.445 | 600. | ||
38.659 | 700. | ||
41.358 | 800. | ||
43.659 | 900. | ||
45.643 | 1000. | ||
47.361 | 1100. | ||
48.855 | 1200. | ||
50.155 | 1300. | ||
51.291 | 1400. | ||
52.283 | 1500. | ||
54.25 | 1750. | ||
55.71 | 2000. | ||
56.79 | 2250. | ||
57.60 | 2500. | ||
58.25 | 2750. | ||
58.72 | 3000. |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
24.632 | 358.72 | Stromsoe E., 1970 | Ideal gas heat capacities are given by [ Stromsoe E., 1970] as a linear function Cp=f1*(a+bT). This expression approximates the experimental values with the average deviation of 1.59 J/mol*K. The accuracy of the experimental heat capacities [ Stromsoe E., 1970] is estimated as less than 0.3%. Other experimental values of Cp [ Parks G.S., 1940] (118.83 at 427.9 K, 127.61 at 457.7 K, and 135.56 J/mol*K at 480.3 K) are believed to be less reliable. Please also see Hales J.L., 1963, Berman N.S., 1964.; GT |
25.26 ± 0.38 | 365.75 | ||
25.280 | 371.15 | ||
25.404 | 373.15 | ||
25.83 ± 0.38 | 378.85 | ||
26.10 ± 0.38 | 384.95 | ||
26.310 | 391.15 | ||
26.48 ± 0.38 | 393.65 | ||
26.685 | 398.15 | ||
27.00 ± 0.38 | 405.35 | ||
27.330 | 411.15 | ||
27.968 | 423.15 | ||
28.370 | 431.15 | ||
29.183 | 448.15 | ||
29.350 | 451.15 | ||
29.09 ± 0.38 | 453.15 | ||
29.68 ± 0.38 | 466.75 | ||
30.356 | 473.15 | ||
30.29 ± 0.38 | 480.55 | ||
31.13 ± 0.38 | 499.75 | ||
31.75 ± 0.38 | 513.95 | ||
32.85 ± 0.38 | 539.05 | ||
34.08 ± 0.38 | 567.05 | ||
35.40 ± 0.38 | 597.25 |
Phase change data
Go To: Top, Gas phase thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 355.5 ± 0.4 | K | AVG | N/A | Average of 102 out of 118 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 185.75 | K | N/A | Ogimachi, Corcoran, et al., 1961 | Uncertainty assigned by TRC = 0.5 K; TRC |
Tfus | 185.35 | K | N/A | Anonymous, 1958 | TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 184.9 ± 0.6 | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 509. ± 2. | K | AVG | N/A | Average of 19 out of 20 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 48. ± 5. | atm | AVG | N/A | Average of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.222 | l/mol | N/A | Gude and Teja, 1995 | |
Vc | 0.223 | l/mol | N/A | Ambrose, Counsell, et al., 1978 | Uncertainty assigned by TRC = 0.003 l/mol; PVT compatible with values chosen.; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 4.51 ± 0.02 | mol/l | N/A | Gude and Teja, 1995 | |
ρc | 4.54 | mol/l | N/A | Teja, Lee, et al., 1989 | TRC |
ρc | 4.538 | mol/l | N/A | Ambrose and Townsend, 1963 | TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 10.7 ± 0.7 | kcal/mol | AVG | N/A | Average of 11 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
9.524 | 355.4 | N/A | Majer and Svoboda, 1985 | |
10.3 | 337. | N/A | Segura, Galindo, et al., 2002 | Based on data from 322. to 355. K.; AC |
9.51 | 355. | N/A | Wormald and Vine, 2000 | AC |
7.10 | 423. | N/A | Wormald and Vine, 2000 | AC |
5.66 | 453. | N/A | Wormald and Vine, 2000 | AC |
3.94 | 483. | N/A | Wormald and Vine, 2000 | AC |
2.51 | 503. | N/A | Wormald and Vine, 2000 | AC |
10.7 | 315. | N/A | Aucejo, Gonzalez-Alfaro, et al., 1995 | Based on data from 300. to 355. K.; AC |
12.0 | 213. | A | Stephenson and Malanowski, 1987 | Based on data from 195. to 228. K.; AC |
10.0 | 355. | A | Stephenson and Malanowski, 1987 | Based on data from 347. to 368. K.; AC |
9.87 | 365. | A | Stephenson and Malanowski, 1987 | Based on data from 350. to 383. K.; AC |
9.37 | 394. | A | Stephenson and Malanowski, 1987 | Based on data from 379. to 461. K.; AC |
8.44 | 468. | A | Stephenson and Malanowski, 1987 | Based on data from 453. to 508. K.; AC |
10.3 | 340. | A,EB | Stephenson and Malanowski, 1987 | Based on data from 325. to 362. K. See also Ambrose, Counsell, et al., 1970.; AC |
10.9 | 288. | N/A | Wilhoit and Zwolinski, 1973 | Based on data from 273. to 374. K.; AC |
10.9 | 303. | N/A | Van Ness, Soczek, et al., 1967 | Based on data from 288. to 348. K.; AC |
10.2 ± 0.02 | 330. | C | Berman, Larkam, et al., 1964 | AC |
9.80 ± 0.02 | 346. | C | Berman, Larkam, et al., 1964 | AC |
9.51 ± 0.02 | 355. | C | Berman, Larkam, et al., 1964 | AC |
9.30 ± 0.02 | 363. | C | Berman, Larkam, et al., 1964 | AC |
9.35 | 410. | N/A | Ambrose and Townsend, 1963, 2 | Based on data from 395. to 508. K.; AC |
10.2 | 344. | EB | Biddiscombe, Collerson, et al., 1963 | Based on data from 329. to 363. K.; AC |
10.3 | 324. | C | Hales, Cox, et al., 1963 | AC |
9.97 | 339. | C | Hales, Cox, et al., 1963 | AC |
9.51 | 355. | C | Hales, Cox, et al., 1963 | AC |
10.37 ± 0.02 | 324.11 | V | Williamson and Harrison, 1957 | ALS |
9.82 | 369. | N/A | Foz Gazulla, Morcilio, et al., 1955 | Based on data from 354. to 420. K.; AC |
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 380. |
---|---|
A (kcal/mol) | 12.76 |
α | -0.708 |
β | 0.6538 |
Tc (K) | 508.3 |
Reference | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
395.1 to 508.24 | 4.57224 | 1221.423 | -87.474 | Ambrose and Townsend, 1963, 3 | Coefficents calculated by NIST from author's data. |
329.92 to 362.41 | 4.8553 | 1357.427 | -75.814 | Biddiscombe, Collerson, et al., 1963, 2 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
1.293 | 185.20 | Andon, Counsell, et al., 1963 | DH |
1.284 | 184.67 | Kelley, 1929 | DH |
1.29 | 185.2 | Domalski and Hearing, 1996 | AC |
1.267 | 184.6 | Parks and Kelley, 1928 | DH |
1.266 | 184.6 | Parks and Kelley, 1925 | DH |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
6.981 | 185.20 | Andon, Counsell, et al., 1963 | DH |
6.953 | 184.67 | Kelley, 1929 | DH |
6.864 | 184.6 | Parks and Kelley, 1928 | DH |
6.86 | 184.6 | Parks and Kelley, 1925 | DH |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
88. | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. | |
130. | 7500. | M | N/A | |
170. | R | N/A | ||
120. | M | Butler, Ramchandani, et al., 1935 |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Buckley and Herington, 1965
Buckley, E.; Herington, E.F.G.,
Equilibria in some secondary alcohol + hydrogen + ketone systems,
Trans. Faraday Soc., 1965, 61, 1618-1625. [all data]
Chao and Rossini, 1965
Chao, J.; Rossini, F.D.,
Heats of combustion, formation, and isomerization of nineteen alkanols,
J. Chem. Eng. Data, 1965, 10, 374-379. [all data]
Snelson and Skinner, 1961
Snelson, A.; Skinner, H.A.,
Heats of combustion: sec-propanol, 1,4-dioxan, 1,3-dioxan and tetrahydropyran,
Trans. Faraday Soc., 1961, 57, 2125-2131. [all data]
Parks, Mosley, et al., 1950
Parks, G.S.; Mosley, J.R.; Peterson, P.V., Jr.,
Heats of combustion and formation of some organic compounds containing oxygen,
J. Chem. Phys., 1950, 18, 152. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Green J.H.S., 1963
Green J.H.S.,
Thermodynamic properties of organic oxygen compounds. Part 12. Vibrational assignment and calculated thermodynamic properties 0-1000 K of isopropyl alcohol,
Trans. Faraday Soc., 1963, 59, 1559-1563. [all data]
Chao J., 1986
Chao J.,
Ideal gas thermodynamic properties of simple alkanols,
Int. J. Thermophys., 1986, 7, 431-442. [all data]
Chao J., 1986, 2
Chao J.,
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties,
J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]
Stromsoe E., 1970
Stromsoe E.,
Heat capacity of alcohol vapors at atmospheric pressure,
J. Chem. Eng. Data, 1970, 15, 286-290. [all data]
Parks G.S., 1940
Parks G.S.,
Some heat capacity data for isopropyl alcohol vapor,
J. Chem. Phys., 1940, 8, 429. [all data]
Hales J.L., 1963
Hales J.L.,
Thermodynamic properties of organic oxygen compounds. Part 10. Measurement of vapor heat capacities and latent heats of vaporization of isopropyl alcohol,
Trans. Faraday Soc., 1963, 59, 1544-1554. [all data]
Berman N.S., 1964
Berman N.S.,
Vapor heat capacity and heat of vaporization of 2-propanol,
J. Chem. Eng. Data, 1964, 9, 218-219. [all data]
Ogimachi, Corcoran, et al., 1961
Ogimachi, N.N.; Corcoran, J.M.; Kruse. H.W.,
Thermal Analysis of Systems of Hydrazine with Propyl Alcohol, Isopropyl Alcohol, and Allyl Alcohol,
J. Chem. Eng. Data, 1961, 6, 238. [all data]
Anonymous, 1958
Anonymous, X.,
Am. Pet. Inst. Res. Proj. 50, 1958, Unpublished, 1958. [all data]
Gude and Teja, 1995
Gude, M.; Teja, A.S.,
Vapor-Liquid Critical Properties of Elements and Compounds. 4. Aliphatic Alkanols,
J. Chem. Eng. Data, 1995, 40, 1025-1036. [all data]
Ambrose, Counsell, et al., 1978
Ambrose, D.; Counsell, J.F.; Lawrenson, I.J.; Lewis, G.B.,
Thermodynamic properties of organic oxygen compounds XLVII. Pressure, volume, temperature relations and thermodynamic properties of propan-2-ol,
J. Chem. Thermodyn., 1978, 10, 1033-1043. [all data]
Teja, Lee, et al., 1989
Teja, A.S.; Lee, R.J.; Rosenthal, D.J.; Anselme, M.J.,
Correlation of the Critical Properties of Alkanes and Alkanols
in 5th IUPAC Conference on Alkanes and AlkanolsGradisca, 1989. [all data]
Ambrose and Townsend, 1963
Ambrose, D.; Townsend, R.,
Thermodynamic Properties of Organic Oxygen Compounds IX. The Critical Properties and Vapor Pressures Above Five Atmospheres of Six Aliphatic Alcohols,
J. Chem. Soc., 1963, 54, 3614-25. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Segura, Galindo, et al., 2002
Segura, Hugo; Galindo, Graciela; Reich, Ricardo; Wisniak, Jaime; Loras, Sonia,
Isobaric Vapor-Liquid Equilibria and Densities for the System Methyl 1,1-Dimethylethyl Ether +2-Propanol,
Physics and Chemistry of Liquids, 2002, 40, 3, 277-294, https://doi.org/10.1080/0031910021000004865
. [all data]
Wormald and Vine, 2000
Wormald, C.J.; Vine, M.D.,
Specific enthalpy increments for propan-2-ol at temperatures up to 563.2 K and pressures up to 11.3 MPa,
The Journal of Chemical Thermodynamics, 2000, 32, 5, 659-669, https://doi.org/10.1006/jcht.1999.0631
. [all data]
Aucejo, Gonzalez-Alfaro, et al., 1995
Aucejo, Antonio; Gonzalez-Alfaro, Vicenta; Monton, Juan B.; Vazquez, M. Isabel,
Isobaric Vapor-Liquid Equilibria of Trichloroethylene with 1-Propanol and 2-Propanol at 20 and 100 kPa,
J. Chem. Eng. Data, 1995, 40, 1, 332-335, https://doi.org/10.1021/je00017a073
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Ambrose, Counsell, et al., 1970
Ambrose, D.; Counsell, J.F.; Davenport, A.J.,
The use of Chebyshev polynomials for the representation of vapour pressures between the triple point and the critical point,
The Journal of Chemical Thermodynamics, 1970, 2, 2, 283-294, https://doi.org/10.1016/0021-9614(70)90093-5
. [all data]
Wilhoit and Zwolinski, 1973
Wilhoit, R.C.; Zwolinski, B.J.,
Physical and thermodynamic properties of aliphatic alcohols,
J. Phys. Chem. Ref. Data Suppl., 1973, 1, 2, 1. [all data]
Van Ness, Soczek, et al., 1967
Van Ness, Hendrick C.; Soczek, C.A.; Peloquin, G.L.; Machado, R.L.,
Thermodynamic excess properties of three alcohol-hydrocarbon systems,
J. Chem. Eng. Data, 1967, 12, 2, 217-224, https://doi.org/10.1021/je60033a017
. [all data]
Berman, Larkam, et al., 1964
Berman, Neil S.; Larkam, Charles W.; McKetta, John J.,
Vapor Heat Capacity and Heat of Vaporization of 2-Propanol.,
J. Chem. Eng. Data, 1964, 9, 2, 218-219, https://doi.org/10.1021/je60021a020
. [all data]
Ambrose and Townsend, 1963, 2
Ambrose, D.; Townsend, R.,
681. Thermodynamic properties of organic oxygen compounds. Part IX. The critical properties and vapour pressures, above five atmospheres, of six aliphatic alcohols,
J. Chem. Soc., 1963, 3614, https://doi.org/10.1039/jr9630003614
. [all data]
Biddiscombe, Collerson, et al., 1963
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S.,
364. Thermodynamic properties of organic oxygen compounds. Part VIII. Purification and vapour pressures of the propyl and butyl alcohols,
J. Chem. Soc., 1963, 1954, https://doi.org/10.1039/jr9630001954
. [all data]
Hales, Cox, et al., 1963
Hales, J.L.; Cox, J.D.; Lees, E.B.,
Thermodynamic properties of organic oxygen compounds. Part 10.-Measurement of vapour heat capacities and latent heats of vaporization of isopropyl alcohol,
Trans. Faraday Soc., 1963, 59, 1544. [all data]
Williamson and Harrison, 1957
Williamson, K.D.; Harrison, R.H.,
Heats of vaporization of 1,1,2-trichloroethane, 1-propanol, and 2-propanol; vapor heat capacity of 1,1,2-trichloroethane,
J. Chem. Phys., 1957, 26, 1409-14. [all data]
Foz Gazulla, Morcilio, et al., 1955
Foz Gazulla, O.R.; Morcilio, J.; Perez-Masia, A.; Mendes, A.,
Anales Real Soc. Espan. Fis. Quim. (Madrid), 1955, 50B, 23. [all data]
Ambrose and Townsend, 1963, 3
Ambrose, D.; Townsend, R.,
Thermodynamic Properties of Organic Oxygen Compounds. Part 9. The Critical Properties and Vapour Pressures, above Five Atmospheres, of Six Aliphatic Alcohols,
J. Chem. Soc., 1963, 3614-3625, https://doi.org/10.1039/jr9630003614
. [all data]
Biddiscombe, Collerson, et al., 1963, 2
Biddiscombe, D.P.; Collerson, R.R.; Handley, R.; Herington, E.F.G.; Martin, J.F.; Sprake, C.H.S.,
Thermodynamic Properties of Organic Oxygen Compounds. Part 8. Purification and Vapor Pressures of the Propyl and Butyl Alcohols,
J. Chem. Soc., 1963, 1954-1957, https://doi.org/10.1039/jr9630001954
. [all data]
Andon, Counsell, et al., 1963
Andon, R.J.L.; Counsell, J.F.; Martin, J.F.,
Thermodynamic properties of organic oxygen compounds. Part II. The thermodynamic properties from 10 to 330 K of isopropyl alcohol,
Trans. Faraday Soc., 1963, 59, 1555-1558. [all data]
Kelley, 1929
Kelley, K.K.,
The heats capacities of isopropyl alcohol and acetone from 16 to 298 °K and the corresponding entropies and free energies,
J. Am. Chem. Soc., 1929, 51, 1145-1150. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Parks and Kelley, 1928
Parks, G.S.; Kelley, K.K.,
The application of the third law of thermodynamics to some organic reactions,
J. Phys. Chem., 1928, 32, 734-750. [all data]
Parks and Kelley, 1925
Parks, G.S.; Kelley, K.K.,
Thermal data on organic compounds. II. The heat capacities of five organic compounds. The entropies and free energies of some homologous series of aliphatic compounds,
J. Am. Chem. Soc., 1925, 47, 2089-2097. [all data]
Butler, Ramchandani, et al., 1935
Butler, J.A.V.; Ramchandani, C.N.; Thomson, D.W.,
The Solubility of Non-Electrolytes. Part 1. The Free Energy of Hydration of Some Alphatic Alcohols,
J. Chem. Soc., 1935, 280-285, https://doi.org/10.1039/jr9350000280
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Pc Critical pressure Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.