Benzoic acid

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Glushko Thermocenter, Russian Academy of Sciences, Moscow

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
24.730298.15Stull D.R., 1969These values were calculated from preliminary assignment of vibrational frequencies. Statistical calculation [ Ali N., 1983] seems to be erroneous.
24.859300.
33.069400.
40.760500.
47.020600.
52.060700.
56.140800.
59.500900.
62.2991000.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δcliquid-771.272 ± 0.048kcal/molCcbGundry, Harrop, et al., 1969Reanalyzed by Pedley, Naylor, et al., 1986, Original value = -770.968 kcal/mol; Corresponding Δfliquid = -92.032 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
Δfsolid-91.98 ± 0.12kcal/molCcbCorral, 1960ALS
Δfsolid-92.2kcal/molCcbLandrieu, Baylocq, et al., 1929ALS
Quantity Value Units Method Reference Comment
Δcsolid-772. ± 1.kcal/molAVGN/AAverage of 17 out of 18 values; Individual data points
Quantity Value Units Method Reference Comment
solid,1 bar39.606cal/mol*KN/AKaji, Tochigi, et al., 1993DH
solid,1 bar40.088cal/mol*KN/AArvidsson, Falk, et al., 1976DH
solid,1 bar40.055cal/mol*KN/AFurukawa, McCoskey, et al., 1951DH
solid,1 bar40.110cal/mol*KN/ADavies and Staveley, 1957DH
solid,1 bar40.80cal/mol*KN/AParks, Huffman, et al., 1933Extrapolation below 90 K, 59.25 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (cal/mol*K) Temperature (K) Reference Comment
61.9413.Pacor, 1967DH

Constant pressure heat capacity of solid

Cp,solid (cal/mol*K) Temperature (K) Reference Comment
35.320300.Kaji, Tochigi, et al., 1993T = 19 to 312 K. Unsmoothed experimental datum.; DH
35.141298.902Sorai, Kaji, et al., 1992T = 15 to 305 K. Unsmoothed experimental datum.; DH
34.950296.29Moriya, Matsuo, et al., 1982T = 13 to 355 K. NBS SRM 29.; DH
35.050298.15Shakirov and Lyubarskii, 1980T = 20 to 300 K.; DH
35.084298.15Arvidsson, Falk, et al., 1976T = 6 to 341 K.; DH
35.151299.62Tatsumi, Matsuo, et al., 1975T = 12 to 304 K.; DH
35.6301.Mosselman, Mourik, et al., 1974One temperature, T = 5 K. Value 5 J/mol*K.; DH
35.086298.15Konicek, Suurkuusk, et al., 1971DH
40.010298.15Justice, 1969As check on system. Only value at 298 K given.; DH
35.167299.99Suga and Seki, 1965T = 13 to 300 K. Value is unsmoothed experimental datum.; DH
31.1340.David, 1964T = 298 to 373 K. Mean value. T = uncertain.; DH
34.969298.15Kolesov, Seregin, et al., 1962T = 22 to 310 K.; DH
35.139298.15Davies and Staveley, 1957T = 20 to 298 K.; DH
35.801298.15Popov and Kolesov, 1956T = 80 to 300 K.; DH
35.088298.15Ginnings and Furukawa, 1953T = 14 to 410 K.; DH
35.088298.15Furukawa, McCoskey, et al., 1951T = 13 to 410 K.; DH
38.29323.Satoh and Sogabe, 1939T = 0 to 100 C. Mean value.; DH
34.680295.1Parks, Huffman, et al., 1933T = 93 to 295 K. Value is unsmoothed experimental datum.; DH
37.09298.Andrews, Lynn, et al., 1926T = 22 to 200 C.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Tboil522.2KN/AWeast and Grasselli, 1989BS
Tboil522.KN/ABuckingham and Donaghy, 1982BS
Tboil523.18KN/ABurriel, 1931Uncertainty assigned by TRC = 0.2 K; TRC
Tboil523.59KN/ABurriel, 1931Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tfus395.2 ± 0.7KAVGN/AAverage of 18 out of 20 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple395.52KN/AMarsh, 1987Uncertainty assigned by TRC = 0.005 K; recommended as calibration standard; TRC
Ttriple395.520KN/AAndon and Connett, 1980Uncertainty assigned by TRC = 0.01 K; TRC
Ttriple395.52KN/AGinnings and Furukawa, 1953, 2Uncertainty assigned by TRC = 0.01 K; TRC
Ttriple395.52KN/AFurukawa, McCoskey, et al., 1951, 2Uncertainty assigned by TRC = 0.01 K; TRC
Quantity Value Units Method Reference Comment
Δvap18.9kcal/molCGCChickos, Hosseini, et al., 1995Based on data from 353. to 393. K.; AC
Quantity Value Units Method Reference Comment
Δsub21.4 ± 0.9kcal/molAVGN/AAverage of 13 values; Individual data points

Reduced pressure boiling point

Tboil (K) Pressure (atm) Reference Comment
406.20.013Weast and Grasselli, 1989BS
406.0.013Buckingham and Donaghy, 1982BS

Enthalpy of vaporization

ΔvapH (kcal/mol) Temperature (K) Method Reference Comment
20.901335.N/ATorres-Gomez, Barreiro-Rodriguez, et al., 1988DH
15.1 ± 0.1401. to 416.N/APena, Ribet, et al., 2003AC
15.8420.AStephenson and Malanowski, 1987Based on data from 405. to 523. K.; AC
16.2368. to 428.GSMatsubara and Kuwamoto, 1985AC
15.6428.ICramer, 1943AC
16.2416.MM,AKlosky, Woo, et al., 1927Based on data from 401. to 520. K.; AC

Entropy of vaporization

ΔvapS (cal/mol*K) Temperature (K) Reference Comment
62.38335.Torres-Gomez, Barreiro-Rodriguez, et al., 1988DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (atm)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
369. to 522.44.472631771.357-127.484Stull, 1947Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kcal/mol) Temperature (K) Method Reference Comment
21.326298.15N/ATorres-Gomez, Barreiro-Rodriguez, et al., 1988DH
21.7 ± 0.48340. to 410.TG-TSSelvakumar, Raghunathan, et al., 2009AC
21.5 ± 0.1307.MERibeiro da Silva, Monte, et al., 2006Based on data from 299. to 317. K.; AC
22.1 ± 1.294. to 331.MEGinkel, Kruif, et al., 2001AC
21.6 ± 0.07323. to 394.GSZielenkiewicz, Perlovich, et al., 1999AC
20.7313. to 343.TGAElder, 1997AC
21.2 ± 0.2311.MEDa Silva and Monte, 1990Based on data from 307. to 314. K.; AC
20.9 ± 0.07335.CTorres-Gomez, Barreiro-Rodriguez, et al., 1988AC
21.7 ± 0.1306.QRGlukhova, Arkhangelova, et al., 1985Based on data from 293. to 319. K.; AC
22.7 ± 0.43294.N/AKaisersberger, Hädrich, et al., 1985AC
21.0368. to 428.GSMatsubara and Kuwamoto, 1985AC
21.7 ± 0.5293. to 313.MEColomina, Jimenez, et al., 1982AC
21.4 ± 0.01353.DMde Kruif and Blok, 1982Based on data from 316. to 391. K.; AC
21.3 ± 0.05320. to 370.CMurata, Sakiyama, et al., 1982AC
20. ± 0.5369.SGSachinidis and Hill, 1980Based on data from 344. to 395. K.; AC
21.1 ± 0.69281. to 323.LENowak, Szczepaniak, et al., 1978AC
21.2 ± 0.38293. to 318.TEDeKruif, van Ginkel, et al., 1975AC
22.2 ± 0.05296.MEArshadi, 1974Based on data from 273. to 318. K.; AC
21.1 ± 0.05293. to 311.TCMde Kruif and Oonk, 1973AC
21.3 ± 0.1338. to 383.MEMalaspina, 1973AC
21.3 ± 0.1338. to 383.CMalaspina, 1973AC
22. ± 0.07293. to 308.MEColomina, Monzon, et al., 1972AC
20.7 ± 0.31290. to 315.ME,CWiedemann, 1972AC
21.3314.N/AAshcroft, 1971Based on data from 299. to 329. K.; AC
21.6 ± 0.2367.HSAMelia and Merrifield, 1970Based on data from 324. to 392. K.; AC
20.7 ± 0.41303.MEWiedemann and Waughna, 1970Based on data from 290. to 315. K. See also Zielenkiewicz, Perlovich, et al., 1999.; AC
21.2 ± 0.1363.GSMertl, 1968Based on data from 348. to 378. K.; AC
21.7299.MEDavies and Kybett, 1965Based on data from 291. to 307. K.; AC
20.1 ± 0.2318.TEWolf and Weghofer, 1938AC
20.1 ± 0.2318.VWolf and Weghofer, 1938, 2ALS
20.5383.THirsbrunner, 1934Based on data from 333. to 389. K.; AC
20.2 ± 0.1364.IKlosky, Woo, et al., 1927Based on data from 377. to 394. K.; AC

Entropy of sublimation

ΔsubS (cal/mol*K) Temperature (K) Reference Comment
71.53298.15Torres-Gomez, Barreiro-Rodriguez, et al., 1988DH

Enthalpy of fusion

ΔfusH (kcal/mol) Temperature (K) Method Reference Comment
4.3035395.52N/AGinnings and Furukawa, 1953DH
4.3021395.52N/AFurukawa, McCoskey, et al., 1951DH
4.061396.9DSCBrittain, 2009AC
4.13394.4DSCSharma, Kant, et al., 2003See also Sharma, Jamwal, et al., 2004.; AC
4.09395.4DSCRoy, Riga, et al., 2002AC
4.300395.5N/APitzer, Peiper, et al., 1984AC
3.8791395.N/APacor, 1967DH
4.1396395.0N/AAndrews, Lynn, et al., 1926DH
4.1587395.N/ADavid, 1964Temperature not measured.; DH

Entropy of fusion

ΔfusS (cal/mol*K) Temperature (K) Reference Comment
10.88395.52Ginnings and Furukawa, 1953DH
10.88395.52Furukawa, McCoskey, et al., 1951DH
9.82395.Pacor, 1967DH
10.5395.0Andrews, Lynn, et al., 1926DH
11.395.David, 1964Temperature; DH

Enthalpy of phase transition

ΔHtrs (kcal/mol) Temperature (K) Initial Phase Final Phase Reference Comment
4.3169395.527crystaline, IliquidAndon and Connett, 1980, 2DH

Entropy of phase transition

ΔStrs (cal/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
10.92395.527crystaline, IliquidAndon and Connett, 1980, 2DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

benzoate anion + Hydrogen cation = Benzoic acid

By formula: C7H5O2- + H+ = C7H6O2

Quantity Value Units Method Reference Comment
Δr340.1 ± 2.2kcal/molG+TSFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr340.0 ± 2.9kcal/molG+TSCumming and Kebarle, 1978gas phase; Recalculated from data in paper; error in Table vs. ladder; B
Δr340.2 ± 2.2kcal/molG+TSCaldwell, Renneboog, et al., 1989gas phase; B
Quantity Value Units Method Reference Comment
Δr333.0 ± 2.0kcal/molIMREFujio, McIver, et al., 1981gas phase; value altered from reference due to change in acidity scale; B
Δr332.9 ± 2.0kcal/molIMRECumming and Kebarle, 1978gas phase; Recalculated from data in paper; error in Table vs. ladder; B
Δr333.1 ± 2.0kcal/molIMRECaldwell, Renneboog, et al., 1989gas phase; B

Bromine anion + Benzoic acid = (Bromine anion • Benzoic acid)

By formula: Br- + C7H6O2 = (Br- • C7H6O2)

Quantity Value Units Method Reference Comment
Δr18.3 ± 1.8kcal/molIMREPaul and Kebarle, 1991gas phase; ΔGaff measured at 423 K, ΔSaff taken as that of PhNO2..Br-; B,M
Quantity Value Units Method Reference Comment
Δr20.cal/mol*KN/APaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr9.8 ± 1.0kcal/molIMREPaul and Kebarle, 1991gas phase; ΔGaff measured at 423 K, ΔSaff taken as that of PhNO2..Br-; B

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
9.8423.PHPMSPaul and Kebarle, 1991gas phase; Entropy change calculated or estimated; M

Water + Benzoyl chloride = Benzoic acid + Hydrogen chloride

By formula: H2O + C7H5ClO = C7H6O2 + HCl

Quantity Value Units Method Reference Comment
Δr-8.136 ± 0.050kcal/molCmMoselhy and Pritchard, 1975liquid phase; solvent: Diphenyl-ether; see Carson, Pritchard, et al., 1950 and Davies, Dunning, et al., 1972; ALS
Δr-24.35kcal/molCmCarson, Pritchard, et al., 1950liquid phase; Heat of hydrolysis; ALS

Benzaldehyde + perbenzoic acid = 2Benzoic acid

By formula: C7H6O + C7H6O3 = 2C7H6O2

Quantity Value Units Method Reference Comment
Δr-75.6 ± 3.0kcal/molCmBriner and Chastonay, 1954liquid phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -75.7 ± 3.0 kcal/mol; ALS

Benzoyl bromide + Water = Hydrogen bromide + Benzoic acid

By formula: C7H5BrO + H2O = HBr + C7H6O2

Quantity Value Units Method Reference Comment
Δr-27.04kcal/molCmCarson, Pritchard, et al., 1950liquid phase; Heat of hydrolysis; ALS

Benzoyl iodide + Water = Hydrogen iodide + Benzoic acid

By formula: C7H5IO + H2O = HI + C7H6O2

Quantity Value Units Method Reference Comment
Δr-24.47kcal/molCmCarson, Pritchard, et al., 1950liquid phase; Heat of hydrolysis; ALS

Water + Benzoic acid, methyl ester = Benzoic acid + Methyl Alcohol

By formula: H2O + C8H8O2 = C7H6O2 + CH4O

Quantity Value Units Method Reference Comment
Δr-17.44 ± 0.45kcal/molEqkGuthrie and Cullimore, 1980liquid phase; ALS

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Timothy J. Johnson, Tanya L. Myers, Yin-Fong Su, Russell G. Tonkyn, Molly Rose K. Kelly-Gorham, and Tyler O. Danby

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1998.
NIST MS number 290514

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Eugeny B. Stern, Antonina A. Goncharova, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Newman and Deno, 1951
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 221
Instrument Beckman spectrophotometer
Melting point 122.4
Boiling point 249.2

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Stull D.R., 1969
Stull D.R., Jr., The Chemical Thermodynamics of Organic Compounds. Wiley, New York, 1969. [all data]

Ali N., 1983
Ali N., Thermodynamic functions of the benzoic acid, phthalic acid and salicylic acid, Indian J. Phys., 1983, B57, 413-419. [all data]

Gundry, Harrop, et al., 1969
Gundry, H.A.; Harrop, D.; Head, A.J.; Lewis, G.B., Thermodynamic properties of organic oxygen compounds. 21. Enthalpies of combustion of benzoic acid, pentan-1-ol, octan-1-ol, and hexadecan-1-ol, J. Chem. Thermodyn., 1969, 1, 321-332. [all data]

Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P., Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]

Corral, 1960
Corral, L.B., Investigaciones termoquimicas sobre los acidos toluicos y dimetilbenzoicos, Rev. R. Acad. Cienc., 1960, 54, 365-403. [all data]

Landrieu, Baylocq, et al., 1929
Landrieu, P.; Baylocq, F.; Johnson, J.R., Etude thermochimique dans la serie furanique, Bull. Soc. Chim. France, 1929, 45, 36-49. [all data]

Kaji, Tochigi, et al., 1993
Kaji, K.; Tochigi, K.; Misawa, Y.; Suzuki, T., An adiabatic calorimeter for samples of mass less than 0.1 g and heat capacity measurements on benzoic acid at temperatures from 19 K to 312 K, J. Chem. Thermodynam., 1993, 25(6), 699-709. [all data]

Arvidsson, Falk, et al., 1976
Arvidsson, K.; Falk, B.; Sunner, S., A small sample low temperature adiabatic heat capacity calorimeter with an automatic data acquisition system, Chem. Scr., 1976, 10, 193-200. [all data]

Furukawa, McCoskey, et al., 1951
Furukawa, G.T.; McCoskey, R.E.; King, G.J., Calorimetric properties of benzoic acid from 0 to 410K, J. Res., 1951, NBS 47, 256-261. [all data]

Davies and Staveley, 1957
Davies, T.; Staveley, L.A.K., The behaviour of the ammonium ion in the ammonium salt of tetraphenylboron by comparison of the heat capacities of the ammonium, rubidium, and potassium salts, Trans. Faraday Soc., 1957, 53, 19-30. [all data]

Parks, Huffman, et al., 1933
Parks, G.S.; Huffman, H.M.; Barmore, M., Thermal data on organic compounds. XI. The heat capacities, entropies and free energies of ten compounds containing oxygen or nitrogen. J. Am. Chem. Soc., 1933, 55, 2733-2740. [all data]

Pacor, 1967
Pacor, P., Applicability of the DuPont 900 DTA apparatus in quantitative differential thermal analysis, Anal. Chim. Acta, 1967, 37, 200-208. [all data]

Sorai, Kaji, et al., 1992
Sorai, M.; Kaji, K.; Kaneko, Y., An automated adiabatic calorimeter for the temperature range 13 K to 530 K The heat capacities for benzoic acid from 15 K to 305 K and of synthetic sapphire from 60 K to 505 K, J. Chem. Thermodynam., 1992, 24(2), 167-180. [all data]

Moriya, Matsuo, et al., 1982
Moriya, K.; Matsuo, T.; Suga, H., Low temperature adiabatic calorimeter with a built-in cryo-refrigerator, J. Chem. Thermodynam., 1982, 14, 1143-1148. [all data]

Shakirov and Lyubarskii, 1980
Shakirov, R.F.; Lyubarskii, M.V., Low-temperature heat capacity and thermodynamic functions of methyl trichlorothioacrylate, SPSTL Deposited Publication 3 KhP-D80, 1980, 19p. [all data]

Tatsumi, Matsuo, et al., 1975
Tatsumi, M.; Matsuo, T.; Suga, H.; Seki, S., An adiabatic calorimeter for high-resolution heat capacity measurements in the temperature range from 12 to 300 K, Bull. Chem. Soc. Japan, 1975, 48, 3060-3066. [all data]

Mosselman, Mourik, et al., 1974
Mosselman, C.; Mourik, J.; Dekker, H., Enthalpies of phase change and heat capacities of some long-chain alcohols. Adiabatic semi-microcalorimeter for studies of polymorphism, J. Chem. Thermodynam., 1974, 6, 477-487. [all data]

Konicek, Suurkuusk, et al., 1971
Konicek, J.; Suurkuusk, J.; Wadso, I., A precise drop heat capacity calorimeter for small samples, Chemica Scripta, 1971, 1, 217-220. [all data]

Justice, 1969
Justice, B.H., Low temperature thermodynamic properties of aluminum trichloride, J. Chem. Eng. Data, 1969, 14, 4-5. [all data]

Suga and Seki, 1965
Suga, H.; Seki, S., An automatic adiabatic calorimeter for low temperatures. The heat capacity of standard benzoic acid, Bull. Chem. Soc. Japan, 1965, 38, 1000-1006. [all data]

David, 1964
David, D.J., Determination of specific heat and heat of fusion by differential thermal analysis. Study of theory and operating parameters, Anal. Chem., 1964, 36, 2162-2166. [all data]

Kolesov, Seregin, et al., 1962
Kolesov, V.P.; Seregin, E.A.; Skuratov, S.M., Adiabatic calorimeter of small volume for the determination of true heat capacity over the range 12-340K, Zhur. Fiz. Khim., 1962, 36, 647-651. [all data]

Popov and Kolesov, 1956
Popov, M.M.; Kolesov, V.P., Determination of the true specific heat of solid substances at low temperatures, Zhur. Obshch. Khim., 1956, 26, 2385-2393. [all data]

Ginnings and Furukawa, 1953
Ginnings, D.C.; Furukawa, G.T., Heat capacity standards for the range 14 to 1200°K, J. Am. Chem. Soc., 1953, 75, 522-527. [all data]

Satoh and Sogabe, 1939
Satoh, S.; Sogabe, T., The specific heats of some solid aromatic acids and their ammonium salts and the atomic heat of nitrogen, Sci. Pap. Inst. Phys. Chem. Res. (Tokyo), 1939, 36, 449-457. [all data]

Andrews, Lynn, et al., 1926
Andrews, D.H.; Lynn, G.; Johnston, J., The heat capacities and heat of crystallization of some isomeric aromatic compounds, J. Am. Chem. Soc., 1926, 48, 1274-1287. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Buckingham and Donaghy, 1982
Buckingham, J.; Donaghy, S.M., Dictionary of Organic Compounds: Fifth Edition, Chapman and Hall, New York, 1982, 1. [all data]

Burriel, 1931
Burriel, F., Physico-Chemical Study of Some Solid Organic Compounds at Ordinary Temperatures, and Their COrrelationo with Temperature, An. R. Soc. Esp. Fis. Quim., 1931, 29, 89. [all data]

Marsh, 1987
Marsh, K.N., Recommended Reference Materials for the Realization of Physicochemical Properties, Blackwell Sci. Pub., Oxford, 1987. [all data]

Andon and Connett, 1980
Andon, R.J.L.; Connett, J.E., Calibrants for thermal analysis. measurement of their enthalpies of fusion by adiabatic calorimetry., Thermochim. Acta, 1980, 42, 241. [all data]

Ginnings and Furukawa, 1953, 2
Ginnings, D.C.; Furukawa, G.T., Heat Capacity Standards for the Range 14 to 1200 K, J. Am. Chem. Soc., 1953, 75, 522-7. [all data]

Furukawa, McCoskey, et al., 1951, 2
Furukawa, G.T.; McCoskey, R.E.; King, G.J., Calorimetric properties of benzoic acid from 0 to 410 K, J. Res. Natl. Bur. Stand. (U. S.), 1951, 47, 256. [all data]

Chickos, Hosseini, et al., 1995
Chickos, James S.; Hosseini, Sarah; Hesse, Donald G., Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times, Thermochimica Acta, 1995, 249, 41-62, https://doi.org/10.1016/0040-6031(95)90670-3 . [all data]

Torres-Gomez, Barreiro-Rodriguez, et al., 1988
Torres-Gomez, L.A.; Barreiro-Rodriguez, G.; Galarza-Mondragon, A., A new method for the measurement of enthalpies of sublimation using differential scanning calorimetry, Thermochim. Acta, 1988, 124, 229-233. [all data]

Pena, Ribet, et al., 2003
Pena, R.; Ribet, J.P.; Maurel, J.L.; Valat, L.; Lacoulonche, F.; Chauvet, A., Sublimation and vaporisation processes of S(-) efaroxan hydrochloride, Thermochimica Acta, 2003, 408, 1-2, 85-96, https://doi.org/10.1016/S0040-6031(03)00321-6 . [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Matsubara and Kuwamoto, 1985
Matsubara, Norio; Kuwamoto, Tooru, Vapor pressure measurements in carrier gas containing ligand vapor using the transpiration technique, Thermochimica Acta, 1985, 83, 2, 193-202, https://doi.org/10.1016/0040-6031(85)87003-9 . [all data]

Cramer, 1943
Cramer, K.S.N., Chem. Zentr. II, 1943, 2234. [all data]

Klosky, Woo, et al., 1927
Klosky, Simon; Woo, Leo P.L.; Flanigan, Robert J., THE VAPOR-PRESSURE CURVE OF BENZOIC ACID, J. Am. Chem. Soc., 1927, 49, 5, 1280-1284, https://doi.org/10.1021/ja01404a017 . [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Selvakumar, Raghunathan, et al., 2009
Selvakumar, Jayapragasam; Raghunathan, Vinjamoor Seshadri; Nagaraja, Karachalacheruvu Seetharamaiah, Vapor Pressure Measurements of Sc(tmhd) 3 and Synthesis of Stabilized Zirconia Thin Films by Hybrid CVD Technique Using Sc(tmhd) 3 , Zr(tmhd) 4 , and Al(acac) 3 [tmhd, 2,2,6,6-tetramethyl-3,5-heptanedione; acac, 2,4-pentanedione] as Precursors, J. Phys. Chem. C, 2009, 113, 44, 19011-19020, https://doi.org/10.1021/jp906204c . [all data]

Ribeiro da Silva, Monte, et al., 2006
Ribeiro da Silva, Manuel A.V.; Monte, Manuel J.S.; Santos, Luís M.N.B.F., The design, construction, and testing of a new Knudsen effusion apparatus, The Journal of Chemical Thermodynamics, 2006, 38, 6, 778-787, https://doi.org/10.1016/j.jct.2005.08.013 . [all data]

Ginkel, Kruif, et al., 2001
Ginkel, C.H.D. van; Kruif, C.G. de; Waal, F.E.B. de, The need for temperature control in effusion experiments (and application to heat of sublimation determination), J. Phys. E: Sci. Instrum., 2001, 8, 6, 490-492, https://doi.org/10.1088/0022-3735/8/6/018 . [all data]

Zielenkiewicz, Perlovich, et al., 1999
Zielenkiewicz, X.; Perlovich, G.L.; Wszelaka-Rylik, M., Journal of Thermal Analysis and Calorimetry, 1999, 57, 1, 225-234, https://doi.org/10.1023/A:1010179814511 . [all data]

Elder, 1997
Elder, J.P., Sublimation measurements of pharmaceutical compounds by isothermal thermogravivletry, Journal of Thermal Analysis, 1997, 49, 2, 897-905, https://doi.org/10.1007/BF01996775 . [all data]

Da Silva and Monte, 1990
Da Silva, Manuel A.V. Ribeiro; Monte, Manuel J.S., The construction, testing and use of a new knudsen effusion apparatus, Thermochimica Acta, 1990, 171, 169-183, https://doi.org/10.1016/0040-6031(90)87017-7 . [all data]

Glukhova, Arkhangelova, et al., 1985
Glukhova, O.T.; Arkhangelova, N.M.; Teplitsky, A.B.; Sukhodub, L.F.; Yanson, I.K.; Kaminski, Miron, The low-temperature quartz resonator method for determination of the enthalpy of sublimation, Thermochimica Acta, 1985, 95, 1, 133-138, https://doi.org/10.1016/0040-6031(85)80041-1 . [all data]

Kaisersberger, Hädrich, et al., 1985
Kaisersberger, E.; Hädrich, W.; Emmerich, W.-D., Measurement of low vapour pressures according to the Knudsen effusion method, Thermochimica Acta, 1985, 95, 2, 331-336, https://doi.org/10.1016/0040-6031(85)85294-1 . [all data]

Colomina, Jimenez, et al., 1982
Colomina, M.; Jimenez, P.; Turrion, C., Vapour pressures and enthalpies of sublimation of naphthalene and benzoic acid, J. Chem. Thermodyn., 1982, 14, 779-784. [all data]

de Kruif and Blok, 1982
de Kruif, C.G.; Blok, J.G., The vapour pressure of benzoic acid, The Journal of Chemical Thermodynamics, 1982, 14, 3, 201-206, https://doi.org/10.1016/0021-9614(82)90011-8 . [all data]

Murata, Sakiyama, et al., 1982
Murata, S.; Sakiyama, M.; Seki, S., Construction and testing of a sublimation calorimetric system using a Calvet microcalorimeter, The Journal of Chemical Thermodynamics, 1982, 14, 8, 707-721, https://doi.org/10.1016/0021-9614(82)90167-7 . [all data]

Sachinidis and Hill, 1980
Sachinidis, J.; Hill, J.O., A re-evaluation of the enthalpy of sublimation of some metal acetylacetonate complexes, Thermochimica Acta, 1980, 35, 1, 59-66, https://doi.org/10.1016/0040-6031(80)85021-0 . [all data]

Nowak, Szczepaniak, et al., 1978
Nowak, M.J.; Szczepaniak, K.; Barski, A.; Shugar, D.Z., Z. Naturforsch. C, 1978, 33C, 876. [all data]

DeKruif, van Ginkel, et al., 1975
DeKruif, C.G.; van Ginkel, C.H.D.; Voogd, J., Torsion-effusion vapour pressure measurements of organic compounds, Conf. Int. Thermodyn. Chim. C. R. 4th, 1975, 8, 11-18. [all data]

Arshadi, 1974
Arshadi, Mohammed R., Determination of heats of sublimation of organic compounds by a mass spectrometric--knudsen effusion method, J. Chem. Soc., Faraday Trans. 1, 1974, 70, 0, 1569, https://doi.org/10.1039/f19747001569 . [all data]

de Kruif and Oonk, 1973
de Kruif, C.G.; Oonk, H.A.J., The determination of enthalpies of sublimation by means of thermal conductivity manometers, Chemie Ing. Techn., 1973, 45, 7, 455-461, https://doi.org/10.1002/cite.330450705 . [all data]

Malaspina, 1973
Malaspina, L., Microcalorimetric determination of the enthalpy of sublimation of benzoic acid and anthracene, J. Chem. Phys., 1973, 59, 1, 387, https://doi.org/10.1063/1.1679817 . [all data]

Colomina, Monzon, et al., 1972
Colomina, M.; Monzon, C.; Turrion, C.; Laynez, J., , Fifth Experimental Thermodynamics Conference, Lancaster, 1972. [all data]

Wiedemann, 1972
Wiedemann, H.G., Applications of thermogravimetry for vapor pressure determination, Thermochim. Acta, 1972, 355-366. [all data]

Ashcroft, 1971
Ashcroft, S.J., The measurement of enthalpies of sublimation by thermogravimetry, Thermochimica Acta, 1971, 2, 6, 512-514, https://doi.org/10.1016/0040-6031(71)80021-7 . [all data]

Melia and Merrifield, 1970
Melia, T.P.; Merrifield, R., Vapour pressures of the tris(acetylacetonato) complexes of scandium(III), vanadium(III) and chromium(III), Journal of Inorganic and Nuclear Chemistry, 1970, 32, 5, 1489-1493, https://doi.org/10.1016/0022-1902(70)80636-4 . [all data]

Wiedemann and Waughna, 1970
Wiedemann, A.G.; Waughna, H.P., , Proceedings of the Third Toronto Symposium on Thermal Analysis, Toronto, 1970, 233. [all data]

Mertl, 1968
Mertl, I., Chem. Listy, 1968, 62, 5, 584. [all data]

Davies and Kybett, 1965
Davies, M.; Kybett, B., Sublimation and vaporization heats of long-chain alcohols, Trans. Faraday Soc., 1965, 61, 1608. [all data]

Wolf and Weghofer, 1938
Wolf, K.L.; Weghofer, H.Z., Z. Phys. Chem. Abt. B, 1938, 39, 194. [all data]

Wolf and Weghofer, 1938, 2
Wolf, K.L.; Weghofer, H., Uber sublimationswarmen, Z. Phys. Chem., 1938, 39, 194-208. [all data]

Hirsbrunner, 1934
Hirsbrunner, H., Uber das gleichgewicht der thermischen dissoziation der salicylsaure, Helv. Chim. Acta, 1934, 17, 477-504. [all data]

Brittain, 2009
Brittain, Harry G., Vibrational Spectroscopic Studies of Cocrystals and Salts. 2. The Benzylamine-Benzoic Acid System, Crystal Growth & Design, 2009, 9, 8, 3497-3503, https://doi.org/10.1021/cg9001972 . [all data]

Sharma, Kant, et al., 2003
Sharma, B.L.; Kant, Rajesh; Sharma, Ritu; Tandon, Sonika, Deviations of binary organic eutectic melt systems, Materials Chemistry and Physics, 2003, 82, 1, 216-224, https://doi.org/10.1016/S0254-0584(03)00199-8 . [all data]

Sharma, Jamwal, et al., 2004
Sharma, B.L.; Jamwal, R.; Kant, R., Thermodynamic and lamella models relationship for the eutectic system benzoic acid-- cinnamic acid, Cryst. Res. Technol., 2004, 39, 5, 454-464, https://doi.org/10.1002/crat.200310210 . [all data]

Roy, Riga, et al., 2002
Roy, S.; Riga, A.T.; Alexander, K.S., Experimental design aids the development of a differential scanning calorimetry standard test procedure for pharmaceuticals, Thermochimica Acta, 2002, 392-393, 399-404, https://doi.org/10.1016/S0040-6031(02)00317-9 . [all data]

Pitzer, Peiper, et al., 1984
Pitzer, Kenneth S.; Peiper, J. Christopher; Busey, R.H., Thermodynamic Properties of Aqueous Sodium Chloride Solutions, J. Phys. Chem. Ref. Data, 1984, 13, 1, 1, https://doi.org/10.1063/1.555709 . [all data]

Andon and Connett, 1980, 2
Andon, R.J.L.; Connett, J.E., Calibrants for thermal analysis. Measurement of their enthalpies of fusion by adiabatic calorimetry, Thermochim. Acta, 1980, 42, 241-247. [all data]

Fujio, McIver, et al., 1981
Fujio, M.; McIver, R.T., Jr.; Taft, R.W., Effects on the acidities of phenols from specific substituent-solvent interactions. Inherent substituent parameters from gas phase acidities, J. Am. Chem. Soc., 1981, 103, 4017. [all data]

Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P., Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A), Can. J. Chem., 1978, 56, 1. [all data]

Caldwell, Renneboog, et al., 1989
Caldwell, G.; Renneboog, R.; Kebarle, P., Gas Phase Acidities of Aliphatic Carboxylic Acids, Based on Measurements of Proton Transfer Equilibria, Can. J. Chem., 1989, 67, 4, 661, https://doi.org/10.1139/v89-092 . [all data]

Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P., Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-, J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014 . [all data]

Moselhy and Pritchard, 1975
Moselhy, G.M.; Pritchard, H.O., The thermochemistry of the chloro-benzoyl chlorides, J. Chem. Thermodyn., 1975, 7, 977-982. [all data]

Carson, Pritchard, et al., 1950
Carson, A.S.; Pritchard, H.O.; Skinner, H.A., The heats of hydrolysis of the benzoyl halides, J. Chem. Soc., 1950, 656-659. [all data]

Davies, Dunning, et al., 1972
Davies, J.V.; Dunning, B.K.; Pritchard, H.O., The enthalpy of formation of benzoyl chloride, J. Chem. Thermodyn., 1972, 4, 731-737. [all data]

Briner and Chastonay, 1954
Briner, E.; Chastonay, P., Etude thermochemique de l'autoxydation de Valdehyde benzoique, Helv. Chim. Acta, 1954, 238, 539-541. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Guthrie and Cullimore, 1980
Guthrie, J.P.; Cullimore, P.A., Effect of the acyl substituent on the equilibrium constant for hydration of esters, Can. J. Chem., 1980, 58, 1281-1294. [all data]

Newman and Deno, 1951
Newman, M.S.; Deno, N.C., Behavior of organic compounds in 100% sulfuric acid, J. Am. Chem. Soc., 1951, 73, 3651-3653. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), UV/Visible spectrum, References