Tetracosane
- Formula: C24H50
- Molecular weight: 338.6538
- IUPAC Standard InChIKey: POOSGDOYLQNASK-UHFFFAOYSA-N
- CAS Registry Number: 646-31-1
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: n-Tetracosane
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
S°solid,1 bar | 651.0 | J/mol*K | N/A | Parks, Moore, et al., 1949 | Extrapolation below 80 K, 160.5 J/mol*K. |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
772.5 | 330.63 | Grigor'ev and Andolenko, 1984 | T = 331 to 433 K. Unsmoothed experimental datum given as 2.281 kJ/kg*K. |
805. | 353. | Atkinson, Larkin, et al., 1969 | T = 353 to 453 K. Equation only. |
Constant pressure heat capacity of solid
Cp,solid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
601. | 300. | Hoehne, 1981 | T = 300 to 500 K. Cv = 1.75 J/g*K. |
730.9 | 298.15 | Parks, Moore, et al., 1949 | T = 80 to 300 K. Specific heat at 290 to 300 K rapidly increasing; possible premelting effects. Value may be high. |
References
Go To: Top, Condensed phase thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Parks, Moore, et al., 1949
Parks, G.S.; Moore, G.E.; Renquist, M.L.; Naylor, B.F.; McClaine, L.A.; Fujii, P.S.; Hatton, J.A.,
Thermal data on organic compounds. XXV. Some heat capacity, entropy and free energy data for nine hydrocarbons of high molecular weight,
J. Am. Chem. Soc., 1949, 71, 3386-3389. [all data]
Grigor'ev and Andolenko, 1984
Grigor'ev, B.A.; Andolenko, R.A.,
Investigation of the isobaric heat capacity of n-paraffinic hydrocarbons at atmospheric pressure, Izv. Vyssh. Ucheb. Zaved.,
Neft i Gaz, 1984, (2), 60-62. [all data]
Atkinson, Larkin, et al., 1969
Atkinson, C.M.L.; Larkin, J.A.; Richardson, M.J.,
Enthalpy changes in molten n-alkanes and polyethylene,
J. Chem. Thermodynam., 1969, 1, 435-445. [all data]
Hoehne, 1981
Hoehne, G.W.H.,
Transitions of n-alkanes above the melting point,
Polym. Bull. (Berlin), 1981, 6, 41-46. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid Cp,solid Constant pressure heat capacity of solid S°solid,1 bar Entropy of solid at standard conditions (1 bar) - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.