Acetic acid
- Formula: C2H4O2
- Molecular weight: 60.0520
- IUPAC Standard InChIKey: QTBSBXVTEAMEQO-UHFFFAOYSA-N
- CAS Registry Number: 64-19-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Ethanoic acid; Ethylic acid; Glacial acetic acid; Methanecarboxylic acid; Vinegar acid; CH3COOH; Acetasol; Acide acetique; Acido acetico; Azijnzuur; Essigsaeure; Octowy kwas; Acetic acid, glacial; Kyselina octova; UN 2789; Aci-jel; Shotgun; Ethanoic acid monomer; NSC 132953
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -115.56 ± 0.086 | kcal/mol | Ccb | Steele, Chirico, et al., 1997 | ALS |
ΔfH°liquid | -115.80 ± 0.05 | kcal/mol | Ccb | Lebedeva, 1964 | ALS |
ΔfH°liquid | -115.7 ± 0.1 | kcal/mol | Ccb | Evans and Skinner, 1959 | ALS |
ΔfH°liquid | -116.4 | kcal/mol | Cm | Carson and Skinner, 1949 | Unpublished result by Rossini; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -209.17 ± 0.081 | kcal/mol | Ccb | Steele, Chirico, et al., 1997 | Corresponding ΔfHºliquid = -115.56 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -208.94 ± 0.05 | kcal/mol | Ccb | Lebedeva, 1964 | Corresponding ΔfHºliquid = -115.79 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -209.0 ± 0.1 | kcal/mol | Ccb | Evans and Skinner, 1959 | Corresponding ΔfHºliquid = -115.7 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -208.5 | kcal/mol | Ccb | Schjanberg, 1935 | Corresponding ΔfHºliquid = -116.2 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 37.76 | cal/mol*K | N/A | Martin and Andon, 1982 | DH |
S°liquid | 46.30 | cal/mol*K | N/A | Parks and Kelley, 1925 | Extrapolation below 90 K. 76.82 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
29.42 | 298.15 | Martin and Andon, 1982 | T = 13 to 450 K. Data also given by equation.; DH |
33.39 | 332. | Swietoslawski and Zielenkiewicz, 1958 | Mean value 22 to 96°C.; DH |
28.80 | 298. | Radulescu and Jula, 1934 | DH |
28.99 | 297.1 | Neumann, 1932 | T = 23.9 to 80.5°C. Value is unsmoothed experimental datum.; DH |
38.19 | 298.1 | Parks, Kelley, et al., 1929 | Extrapolation below 90 K, 42.68 J/mol*K. Revision of previous data.; DH |
29.49 | 294.7 | Parks and Kelley, 1925 | T = 87 to 295 K. Value is unsmoothed experimental datum.; DH |
32.7 | 287. to 335. | Pickering, 1895 | T = 260 to 335 K.; DH |
29.52 | 298. | von Reis, 1881 | T = 292 to 358 K.; DH |
Phase change data
Go To: Top, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 391.2 ± 0.6 | K | AVG | N/A | Average of 80 out of 90 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 289.6 ± 0.5 | K | AVG | N/A | Average of 8 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 289.8 | K | N/A | Wilhoit, Chao, et al., 1985 | Uncertainty assigned by TRC = 0.05 K; TRC |
Ttriple | 289.69 | K | N/A | Martin and Andon, 1982, 2 | Uncertainty assigned by TRC = 0.04 K; TRC |
Ttriple | 289.8 | K | N/A | Parks and Kelley, 1925, 2 | Uncertainty assigned by TRC = 0.15 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 593. ± 3. | K | AVG | N/A | Average of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 57.05 | atm | N/A | Andereya and Chase, 1990 | Uncertainty assigned by TRC = 0.20 atm; TRC |
Pc | 57.5279 | atm | N/A | D'Souza and Teja, 1987 | Uncertainty assigned by TRC = 0.89 atm; Ambrose's procedure; TRC |
Pc | 57.10 | atm | N/A | Ambrose, Ellender, et al., 1977 | Uncertainty assigned by TRC = 0.08 atm; TRC |
Pc | 57.11 | atm | N/A | Young, 1910 | Uncertainty assigned by TRC = 0.99995 atm; TRC |
Pc | 57.110 | atm | N/A | Young, 1891 | Uncertainty assigned by TRC = 0.2631 atm; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 5.84 | mol/l | N/A | Vandana and Teja, 1995 | Uncertainty assigned by TRC = 0.02 mol/l; TRC |
ρc | 5.838 | mol/l | N/A | Young, 1910 | Uncertainty assigned by TRC = 0.02 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 12.0 | kcal/mol | CGC | Verevkin, 2000 | Based on data from 303. to 378. K.; AC |
ΔvapH° | 12.3 | kcal/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 12.3 ± 0.36 | kcal/mol | C | Konicek and Wadso, 1970 | ALS |
ΔvapH° | 12.3 ± 0.38 | kcal/mol | C | Konicek, Wadsö, et al., 1970 | AC |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
5.66 | 391.1 | N/A | Majer and Svoboda, 1985 | |
9.35 | 360. | EB | Muñoz and Krähenbühl, 2001 | Based on data from 345. to 383. K.; AC |
9.78 | 335. | N/A | Vercher, Vázquez, et al., 2001 | Based on data from 320. to 395. K.; AC |
9.06 | 406. | A | Stephenson and Malanowski, 1987 | Based on data from 391. to 550. K.; AC |
10.0 | 305. | A | Stephenson and Malanowski, 1987 | Based on data from 290. to 396. K.; AC |
9.25 | 406. | A | Stephenson and Malanowski, 1987 | Based on data from 391. to 447. K.; AC |
9.11 | 452. | A | Stephenson and Malanowski, 1987 | Based on data from 437. to 535. K.; AC |
9.27 | 540. | A | Stephenson and Malanowski, 1987 | Based on data from 525. to 593. K.; AC |
9.94 | 304. | A | Stephenson and Malanowski, 1987 | Based on data from 289. to 392. K. See also Dykyj, 1970.; AC |
10.3 | 308. | N/A | Tamir, Dragoescu, et al., 1983 | AC |
9.63 | 340. | N/A | McDonald, Shrader, et al., 1959 | Based on data from 325. to 391. K.; AC |
9.94 | 318. | MM | Potter and Ritter, 1954 | Based on data from 303. to 399. K.; AC |
Enthalpy of vaporization
ΔvapH = A exp(-αTr)
(1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kcal/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 392. |
---|---|
A (kcal/mol) | 5.459 |
α | 0.0184 |
β | -0.0454 |
Tc (K) | 592.7 |
Reference | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference |
---|---|---|---|---|
290.26 to 391.01 | 4.67635 | 1642.54 | -39.764 | McDonald, Shrader, et al., 1959 |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
16.1 ± 0.2 | 223. | TE,ME | Calis-Van Ginkel, Calis, et al., 1978 | Based on data from 213. to 230. K.; AC |
17. ± 0.2 | 213. | TE,ME | Calis-Van Ginkel, Calis, et al., 1978 | Based on data from 213. to 230. K.; AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
2.801 | 298.7 | Domalski and Hearing, 1996 | See also Martin and Andon, 1982.; AC |
2.8031 | 289.9 | Parks and Kelley, 1925 | DH |
2.588 | 289.8 | Louguinine and Dupont, 1911 | AC |
2.753 | 283.7 | Meyer, 1910 | AC |
2.6592 | 290.06 | Pickering, 1895 | DH |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
9.673 | 289.9 | Parks and Kelley, 1925 | DH |
9.168 | 290.06 | Pickering, 1895 | DH |
Enthalpy of phase transition
ΔHtrs (kcal/mol) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
2.8011 | 298.69 | crystaline, I | liquid | Martin and Andon, 1982 | DH |
Entropy of phase transition
ΔStrs (cal/mol*K) | Temperature (K) | Initial Phase | Final Phase | Reference | Comment |
---|---|---|---|---|---|
9.68 | 298.69 | crystaline, I | liquid | Martin and Andon, 1982 | DH |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Steele, Chirico, et al., 1997
Steele, W.V.; Chirico, R.D.; Cowell, A.B.; Knipmeyer, S.E.; Nguyen, A.,
Thermodynamic properties and ideal-gas enthalpies of formation for 2-aminoisobutyric acid (2-methylalanine), acetic acid, (4-methyl-3-penten-2-one), 4-methylpent-1-ene, 2,2'-bis(phenylthio)propane, and glycidyl phenyl ether (1,2-epoxy-3-phenoxypropane),
J. Chem. Eng. Data, 1997, 42, 1052-1066. [all data]
Lebedeva, 1964
Lebedeva, N.D.,
Heats of combustion of monocarboxylic acids,
Russ. J. Phys. Chem. (Engl. Transl.), 1964, 38, 1435-1437. [all data]
Evans and Skinner, 1959
Evans, F.W.; Skinner, H.A.,
The heat of combustion of acetic acid,
Trans. Faraday Soc., 1959, 55, 260-261. [all data]
Carson and Skinner, 1949
Carson, A.S.; Skinner, H.A.,
201. Carbon-halogen bond energies in the acetyl halides,
J. Chem. Soc., 1949, 936-939. [all data]
Schjanberg, 1935
Schjanberg, E.,
Die Verbrennungswarmen und die Refraktionsdaten einiger chlorsubstituierter Fettsauren und Ester.,
Z. Phys. Chem. Abt. A, 1935, 172, 197-233. [all data]
Martin and Andon, 1982
Martin, J.F.; Andon, R.J.L.,
Thermodynamic properties of organic oxygen compounds. Part LII. Molar heat capacity of ethanoic, propanoic, and butanoic acids,
J. Chem. Thermodynam., 1982, 14, 679-688. [all data]
Parks and Kelley, 1925
Parks, G.S.; Kelley, K.K.,
Thermal data on organic compounds. II. The heat capacities of five organic compounds. The entropies and free energies of some homologous series of aliphatic compounds,
J. Am. Chem. Soc., 1925, 47, 2089-2097. [all data]
Swietoslawski and Zielenkiewicz, 1958
Swietoslawski, W.; Zielenkiewicz, A.,
Mean specific heat of some ternary azeotropes,
Bull. Acad. Pol. Sci. Ser. Sci. Chim., 1958, 6, 365-366. [all data]
Radulescu and Jula, 1934
Radulescu, D.; Jula, O.,
Beiträge zur Bestimmung der Abstufung der Polarität des Aminstickstoffes in den organischen Verbindungen,
Z. Phys. Chem., 1934, B26, 390-393. [all data]
Neumann, 1932
Neumann, M.B.,
Die Untersuchung der Wärmekapazität vom binären System CH3COOH + H2O bei verschiedenen Temperaturen,
Z. Phys. Chem., 1932, A158, 258-264. [all data]
Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M.,
Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds,
J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]
Pickering, 1895
Pickering, S.U.,
A comparison of some properties of acetic acid and its chloro- and bromo-derivatives,
J. Chem. Soc., 1895, 67, 664-684. [all data]
von Reis, 1881
von Reis, M.A.,
Die specifische Wärme flüssiger organischer Verbindungen und ihre Beziehung zu deren Moleculargewicht,
Ann. Physik [3], 1881, 13, 447-464. [all data]
Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R.,
Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases,
J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]
Martin and Andon, 1982, 2
Martin, J.F.; Andon, R.J.L.,
Thermodynamic properties of organic oxygen compounds. Part LII. Molar heat capacity of ethanoic, propanoic, and butanoic acids.,
J. Chem. Thermodyn., 1982, 14, 679-88. [all data]
Parks and Kelley, 1925, 2
Parks, G.S.; Kelley, K.K.,
Thermal Data on Organic Compounds II. The Heat Capacities of Five Organic Compounds. The Entropies and Free Energies of Some Homologous Series of Aliphatic Compounds,
J. Am. Chem. Soc., 1925, 47, 2089-97. [all data]
Andereya and Chase, 1990
Andereya, E.; Chase, J.D.,
Chem. Eng. Technol., 1990, 13, 304-12. [all data]
D'Souza and Teja, 1987
D'Souza, R.; Teja, A.S.,
The prediction of the vapor pressures of carboxylic acids,
Chem. Eng. Commun., 1987, 61, 13. [all data]
Ambrose, Ellender, et al., 1977
Ambrose, D.; Ellender, J.H.; Sprake, C.H.S.; Townsend, R.,
Thermo. Prop. of Org. Oxygen Compounds XLV. The Vapor Pressure of Acetic Acid,
J. Chem. Thermodyn., 1977, 9, 735. [all data]
Young, 1910
Young, S.,
The Internal Heat of Vaporization constants of thirty pure substances,
Sci. Proc. R. Dublin Soc., 1910, 12, 374. [all data]
Young, 1891
Young, S.,
J. Chem. Soc., 1891, 59, 903. [all data]
Vandana and Teja, 1995
Vandana, V.; Teja, A.S.,
The critical temperatures and densities of acetic acid-water mixtures,
Fluid Phase Equilib., 1995, 103, 113-18. [all data]
Verevkin, 2000
Verevkin, S.P.,
Measurement and Prediction of the Monocarboxylic Acids Thermochemical Properties,
J. Chem. Eng. Data, 2000, 45, 5, 953-960, https://doi.org/10.1021/je990282m
. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Konicek and Wadso, 1970
Konicek, J.; Wadso, I.,
Enthalpies of vaporization of organic compounds. VII. Some carboxylic acids,
Acta Chem. Scand., 1970, 24, 2612-26. [all data]
Konicek, Wadsö, et al., 1970
Konicek, Jiri; Wadsö, Ingemar; Munch-Petersen, J.; Ohlson, Ragnar; Shimizu, Akira,
Enthalpies of Vaporization of Organic Compounds. VII. Some Carboxylic Acids.,
Acta Chem. Scand., 1970, 24, 2612-2616, https://doi.org/10.3891/acta.chem.scand.24-2612
. [all data]
Muñoz and Krähenbühl, 2001
Muñoz, Laura A.L.; Krähenbühl, M. Alvina,
Isobaric Vapor Liquid Equilibrium (VLE) Data of the Systems n -Butanol + Butyric Acid and n -Butanol + Acetic Acid,
J. Chem. Eng. Data, 2001, 46, 1, 120-124, https://doi.org/10.1021/je000033u
. [all data]
Vercher, Vázquez, et al., 2001
Vercher, Ernesto; Vázquez, M. Isabel; Martínez-Andreu, Antoni,
Isobaric Vapor-Liquid Equilibria for Water + Acetic Acid + Lithium Acetate,
J. Chem. Eng. Data, 2001, 46, 6, 1584-1588, https://doi.org/10.1021/je010106p
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Dykyj, 1970
Dykyj, J.,
Petrochemica, 1970, 10, 2, 51. [all data]
Tamir, Dragoescu, et al., 1983
Tamir, Abraham; Dragoescu, Claudia; Apelblat, Alexander; Wisniak, Jaime,
Heats of vaporization and vapor-liquid equilibria in associated solutions containing formic acid, acetic acid, propionic acid and carbon tetrachloride,
Fluid Phase Equilibria, 1983, 10, 1, 9-42, https://doi.org/10.1016/0378-3812(83)80002-8
. [all data]
McDonald, Shrader, et al., 1959
McDonald, R.A.; Shrader, S.A.; Stull, D.R.,
Vapor Pressures and Freezing Points of Thirty Pure Organic Compounds.,
J. Chem. Eng. Data, 1959, 4, 4, 311-313, https://doi.org/10.1021/je60004a009
. [all data]
Potter and Ritter, 1954
Potter, Andrew E.; Ritter, H.L.,
The Vapor Pressure of Acetic Acid and Acetic-d 3 Acid-d. The Liquid Density of Acetic-d 3 Acid-d,
J. Phys. Chem., 1954, 58, 11, 1040-1042, https://doi.org/10.1021/j150521a025
. [all data]
Calis-Van Ginkel, Calis, et al., 1978
Calis-Van Ginkel, C.H.D.; Calis, G.H.M.; Timmermans, C.W.M.; de Kruif, C.G.; Oonk, H.A.J.,
Enthalpies of sublimation and dimerization in the vapour phase of formic, acetic, propanoic, and butanoic acids,
The Journal of Chemical Thermodynamics, 1978, 10, 11, 1083-1088, https://doi.org/10.1016/0021-9614(78)90082-4
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Louguinine and Dupont, 1911
Louguinine, W.; Dupont, G.,
Bull. Soc. Chim. Fr., 1911, 9, 219. [all data]
Meyer, 1910
Meyer, J.,
Z. Phys. Chem., Stoechiom. Verwandtschaftsl., 1910, 72, 225. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature ΔHtrs Enthalpy of phase transition ΔStrs Entropy of phase transition ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.