Pentane, 3-ethyl-2-methyl-
- Formula: C8H18
- Molecular weight: 114.2285
- IUPAC Standard InChIKey: DUPUVYJQZSLSJB-UHFFFAOYSA-N
- CAS Registry Number: 609-26-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: 2-Methyl-3-ethylpentane; 3-Ethyl-2-methylpentane
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -249.7 ± 1.3 | kJ/mol | Ccb | Prosen and Rossini, 1945 | |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -5471.0 ± 1.4 | kJ/mol | Ccb | Prosen and Rossini, 1945 | Corresponding ΔfHºliquid = -249.6 kJ/mol (simple calculation by NIST; no Washburn corrections) |
Phase change data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 388.8 ± 0.2 | K | AVG | N/A | Average of 14 out of 15 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 158.1 ± 0.4 | K | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 567.1 ± 0.5 | K | N/A | Daubert, 1996 | |
Tc | 567. | K | N/A | Majer and Svoboda, 1985 | |
Tc | 567.02 | K | N/A | McMicking and Kay, 1965 | Uncertainty assigned by TRC = 0.4 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 27.0 ± 0.4 | bar | N/A | Daubert, 1996 | |
Pc | 27.004 | bar | N/A | McMicking and Kay, 1965 | Uncertainty assigned by TRC = 0.4053 bar; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.442 | l/mol | N/A | Daubert, 1996 | |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 2.26 ± 0.04 | mol/l | N/A | Daubert, 1996 | |
ρc | 2.26 | mol/l | N/A | McMicking and Kay, 1965 | Uncertainty assigned by TRC = 0.04 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 38.56 | kJ/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 38.5 | kJ/mol | N/A | Reid, 1972 | AC |
ΔvapH° | 38.5 ± 0.1 | kJ/mol | C | Osborne and Ginnings, 1947 | AC |
ΔvapH° | 38.52 | kJ/mol | C | Osborne and Ginnings, 1947, 2 | ALS |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
32.93 | 388.8 | N/A | Majer and Svoboda, 1985 | |
37.4 | 326. | A,MM | Stephenson and Malanowski, 1987 | Based on data from 311. to 390. K. See also Willingham, Taylor, et al., 1945.; AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kJ/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
298. to 388. | 54.62 | 0.2746 | 567. | Majer and Svoboda, 1985 |
Reaction thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C8H18 = C8H18
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 0.2 ± 0.92 | kJ/mol | Ciso | Prosen and Rossini, 1945, 2 | liquid phase; Calculated from ΔHc |
By formula: 3H2 + C8H12 = C8H18
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -340. ± 0.4 | kJ/mol | Chyd | Roth, Adamczak, et al., 1991 | liquid phase |
IR Spectrum
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | NIST Standard Reference Data Program Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center |
State | gas |
Instrument | HP-GC/MS/IRD |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D.,
Heats of combustion and formation of the paraffin hydrocarbons at 25° C,
J. Res. NBS, 1945, 263-267. [all data]
Daubert, 1996
Daubert, T.E.,
Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes,
J. Chem. Eng. Data, 1996, 41, 365-372. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
McMicking and Kay, 1965
McMicking, J.H.; Kay, W.B.,
Vapor Pressures and Saturated Liquid and Vapor Densities of The Isomeric Heptanes and Isomeric Octanes,
Proc., Am. Pet. Inst., Sect. 3, 1965, 45, 75-90. [all data]
Reid, 1972
Reid, Robert C.,
Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00,
AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637
. [all data]
Osborne and Ginnings, 1947
Osborne, Nathan S.; Ginnings, Defoe C.,
Measurements of heat of vaporization and heat capacity of a number of hydrocarbons,
J. RES. NATL. BUR. STAN., 1947, 39, 5, 453-17, https://doi.org/10.6028/jres.039.031
. [all data]
Osborne and Ginnings, 1947, 2
Osborne, N.S.; Ginnings, D.C.,
Measurements of heat of vaporization and heat capacity of a number of hydrocarbons,
J. Res. NBS, 1947, 39, 453-477. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D.,
Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons,
J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009
. [all data]
Prosen and Rossini, 1945, 2
Prosen, E.J.; Rossini, F.D.,
Heats of isomerization of the 18 octanes,
J. Res. NBS, 1945, 34, 163-174. [all data]
Roth, Adamczak, et al., 1991
Roth, W.R.; Adamczak, O.; Breuckmann, R.; Lennartz, H.-W.; Boese, R.,
Die Berechnung von Resonanzenergien; das MM2ERW-Kraftfeld,
Chem. Ber., 1991, 124, 2499-2521. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References
- Symbols used in this document:
Pc Critical pressure Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Vc Critical volume ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.