Ethyl ether

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-252.7 ± 2.0kJ/molCcbPihlaja and Heikkil, 1968Reanalyzed by Pedley, Naylor, et al., 1986, Original value = -250.3 ± 1.8 kJ/mol; ALS
Δfgas-252.2 ± 0.79kJ/molCmPilcher, Skinner, et al., 1963ALS
Δfgas-244.kJ/molCcbMurrin and Goldhagen, 1957ALS
Quantity Value Units Method Reference Comment
Δcgas-2726.3 ± 1.8kJ/molCcbPihlaja and Heikkil, 1968Corresponding Δfgas = -276.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-2751.1 ± 0.75kJ/molCmPilcher, Skinner, et al., 1963Corresponding Δfgas = -252.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
gas342.2J/mol*KN/ACounsell J.F., 1971Other third-law entropy values at 298.15 K are 342.46 [ Cope C.S., 1959], 342.33 [ Stull D.R., 1969], and 342.60 J/mol*K [ Chao J., 1986].; GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
62.50100.Chao J., 1986p=1 bar.; GT
84.80150.
99.70200.
114.30273.15
119.46 ± 0.15298.15
119.86300.
142.81400.
165.77500.
186.35600.
204.35700.
220.04800.
233.74900.
245.681000.
256.081100.
265.121200.
272.971300.
279.811400.
285.761500.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
121.94309.98Counsell J.F., 1971Other experimental values of heat capacity [ Jennings W.H., 1934, Jatkar S.K.K., 1939, Valentin F.H.H., 1950] are believed to be less reliable (see [ Chao J., 1986]).; GT
126.57329.99
131.32350.00
137.21375.00
143.27400.01
149.10424.99
155.11450.04

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C4H11O+ + Ethyl ether = (C4H11O+ • Ethyl ether)

By formula: C4H11O+ + C4H10O = (C4H11O+ • C4H10O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr131.kJ/molPHPMSSzulejko and McMahon, 1991gas phase; M
Δr127.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr160.J/mol*KPHPMSSzulejko and McMahon, 1991gas phase; M
Δr129.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr88.3kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C5H11O+ + Ethyl ether = (C5H11O+ • Ethyl ether)

By formula: C5H11O+ + C4H10O = (C5H11O+ • C4H10O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr123.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr86.6kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C6H15O+ + Ethyl ether = (C6H15O+ • Ethyl ether)

By formula: C6H15O+ + C4H10O = (C6H15O+ • C4H10O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr123.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr126.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr85.4kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C6H15O+ + Ethyl ether = (C6H15O+ • Ethyl ether)

By formula: C6H15O+ + C4H10O = (C6H15O+ • C4H10O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr109.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr129.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr70.3kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C3H9Si+ + Ethyl ether = (C3H9Si+ • Ethyl ether)

By formula: C3H9Si+ + C4H10O = (C3H9Si+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr185.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr125.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
127.468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

C6H14N+ + Ethyl ether = (C6H14N+ • Ethyl ether)

By formula: C6H14N+ + C4H10O = (C6H14N+ • C4H10O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr92.0kJ/molPHPMSMeot-Ner, 1984gas phase; M
Δr91.6kJ/molPHPMSMeot-Ner (Mautner), 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr133.J/mol*KPHPMSMeot-Ner, 1984gas phase; M
Δr133.J/mol*KPHPMSMeot-Ner (Mautner), 1983gas phase; M

CH6N+ + Ethyl ether = (CH6N+ • Ethyl ether)

By formula: CH6N+ + C4H10O = (CH6N+ • C4H10O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr92.0kJ/molPHPMSMeot-Ner, 1984gas phase; M
Δr92.0kJ/molPHPMSMeot-Ner (Mautner), 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSMeot-Ner, 1984gas phase; M
Δr105.J/mol*KPHPMSMeot-Ner (Mautner), 1983gas phase; M

Ethene, ethoxy- + Hydrogen = Ethyl ether

By formula: C4H8O + H2 = C4H10O

Quantity Value Units Method Reference Comment
Δr-110.9 ± 0.59kJ/molChydAllinger, Glaser, et al., 1981liquid phase; solvent: Hexane; ALS
Δr-110.8 ± 0.3kJ/molChydDolliver, Gresham, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -112. ± 3. kJ/mol; At 355°K; ALS

Sodium ion (1+) + Ethyl ether = (Sodium ion (1+) • Ethyl ether)

By formula: Na+ + C4H10O = (Na+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr130. ± 1.kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr118.J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
89.1298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

C5H6N+ + Ethyl ether = (C5H6N+ • Ethyl ether)

By formula: C5H6N+ + C4H10O = (C5H6N+ • C4H10O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr94.1kJ/molPHPMSMeot-Ner (Mautner), 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr138.J/mol*KPHPMSMeot-Ner (Mautner), 1983gas phase; M

Nitric oxide anion + Ethyl ether = (Nitric oxide anion • Ethyl ether)

By formula: NO- + C4H10O = (NO- • C4H10O)

Quantity Value Units Method Reference Comment
Δr173.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Vinyl ether + 2Hydrogen = Ethyl ether

By formula: C4H6O + 2H2 = C4H10O

Quantity Value Units Method Reference Comment
Δr-237.4 ± 0.42kJ/molChydDolliver, Gresham, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -239.5 ± 0.4 kJ/mol; At 355°K; ALS

Chlorine anion + Ethyl ether = C4H10ClO-

By formula: Cl- + C4H10O = C4H10ClO-

Quantity Value Units Method Reference Comment
Δr37.7 ± 1.7kJ/molTDAsBogdanov, Lee, et al., 2001gas phase; B
Quantity Value Units Method Reference Comment
Δr14. ± 4.2kJ/molTDAsBogdanov, Lee, et al., 2001gas phase; B

(Sodium ion (1+) • 2Ethyl ether) + Ethyl ether = (Sodium ion (1+) • 3Ethyl ether)

By formula: (Na+ • 2C4H10O) + C4H10O = (Na+ • 3C4H10O)

Quantity Value Units Method Reference Comment
Δr69. ± 1.kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

(Sodium ion (1+) • Ethyl ether) + Ethyl ether = (Sodium ion (1+) • 2Ethyl ether)

By formula: (Na+ • C4H10O) + C4H10O = (Na+ • 2C4H10O)

Quantity Value Units Method Reference Comment
Δr96. ± 1.kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr117.J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

Potassium ion (1+) + Ethyl ether = (Potassium ion (1+) • Ethyl ether)

By formula: K+ + C4H10O = (K+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr93.3kJ/molHPMSDavidson and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KHPMSDavidson and Kebarle, 1976gas phase; M

Magnesium ion (1+) + Ethyl ether = (Magnesium ion (1+) • Ethyl ether)

By formula: Mg+ + C4H10O = (Mg+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr280. ± 20.kJ/molICROperti, Tews, et al., 1988gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M

2Ethanol = Ethyl ether + Water

By formula: 2C2H6O = C4H10O + H2O

Quantity Value Units Method Reference Comment
Δr-24.0 ± 0.1kJ/molEqkConnett, 1972gas phase; ALS

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas Chromatography, References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Tanya L. Myers, Russell G. Tonkyn, Ashley M. Oeck, Tyler O. Danby, John S. Loring, Matthew S. Taubman, Stephen W. Sharpe, Jerome C. Birnbaum, and Timothy J. Johnson


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedOV-1130.495.Gurevich and Roshchina, 2003He or N2, Gas-Chrom Q
PackedSE-30100.496.Winskowski, 1983Gaschrom Q; Column length: 2. m
PackedSqualane50.478.Becerra, Sánchez, et al., 1982N2, Chromosorb W-AM; Column length: 6. m
PackedPorapack Q200.486.Goebel, 1982N2
PackedApiezon L120.473.Bogoslovsky, Anvaer, et al., 1978Celite 545
PackedApiezon L160.471.Bogoslovsky, Anvaer, et al., 1978Celite 545
PackedApiezon L70.476.Bogoslovsky, Anvaer, et al., 1978 
PackedApolane70.482.6Riedo, Fritz, et al., 1976He, Chromosorb; Column length: 2.4 m
PackedApiezon M130.476.Golovnya and Garbuzov, 1974N2, Chromosorb W; Column length: 2.1 m
PackedSqualane50.474.Vernon, 1971N2
PackedSilicon High Vacuum Grease (obsolete)90.480.Jonas, Janák, et al., 1966H2
PackedApiezon L130.484.Wehrli and Kováts, 1959Celite; Column length: 2.25 m
PackedApiezon L70.476.Wehrli and Kováts, 1959Celite; Column length: 2.25 m

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedCarbowax 20M75.630.Goebel, 1982N2, Kieselgur (60-100 mesh); Column length: 2. m
PackedPEG-2000120.577.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000150.570.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000152.577.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000179.570.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000180.567.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m
PackedPEG-2000200.567.Anderson, Jurel, et al., 1973He, Celite 545 (44-60 mesh); Column length: 3. m

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCBP-20576.Shimadzu, 200325. m/0.2 mm/0.25 μm, He, 50. C @ 5. min, 4. K/min; Tend: 200. C

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax 20M596.Chen, Kuo, et al., 1982He, 50. C @ 10. min, 1. K/min; Tend: 160. C

Normal alkane RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryDB-160.500.Shimadzu, 2003, 260. m/0.32 mm/1. μm, He
PackedSynachrom150.493.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m
PackedSynachrom150.494.Dufka, Malinsky, et al., 1971Helium, Synachrom (60-80 mesh); Column length: 1.5 m
PackedSqualane100.464.Vernon, 1971N2

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS510.Kotowska, Zalikowski, et al., 201230. m/0.25 mm/0.25 μm, Helium, 35. C @ 5. min, 3. K/min, 300. C @ 15. min
CapillaryOV-101485.Zenkevich, Eliseenkov, et al., 201125. m/0.20 mm/0.25 μm, Nitrogen, 6. K/min; Tstart: 40. C; Tend: 220. C
CapillaryDB-5485.Savel'eva, Zenkevich, et al., 200325. m/0.20 mm/0.33 μm, Helium, 40. C @ 1. min, 5. K/min, 270. C @ 15. min
CapillaryDB-1504.Habu, Flath, et al., 19853. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 0. C; Tend: 250. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS509.Kotowska, Zalikowski, et al., 201230. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryHP-5508.Rotsatschakul, Visesanguan, et al., 200960. m/0.25 mm/0.25 μm, Helium; Program: 30 0C (2 min) 2 0Cmin -> 60 0C 10 0C/min -> 100 0C 20 0C/min -> 140 0C 10 0C/min -> 200 0C (10 min)
CapillaryHP-5504.Garcia-Estaban, Ansorena, et al., 200450. m/0.32 mm/1.05 μm; Program: 40C(10min) => 5C/min => 200C => 20C/min => 250C(5min)
CapillaryDB-5504.Garcia-Estaban, Ansorena, et al., 2004, 250. m/0.32 mm/1.05 μm; Program: 40C(10min) => 5C/min => 200C => 20C/min => 250C (5min)
CapillaryMethyl Silicone484.N/AProgram: not specified
CapillarySPB-1499.Flanagan, Streete, et al., 199760. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C
CapillaryPolydimethyl siloxanes485.Zenkevich, 1997Program: not specified
CapillaryPolydimethyl siloxanes485.Zenkevich, Chupalov, et al., 1996Program: not specified
CapillarySPB-1499.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C
CapillarySPB-1515.Strete, Ruprah, et al., 199260. m/0.53 mm/5.0 μm, Helium; Program: not specified
CapillaryDB-1470.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryDB-1477.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified

Normal alkane RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryCarbowax 20M100.608.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium
CapillaryCarbowax 20M120.606.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium
CapillaryCarbowax 20M60.618.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium
CapillaryCarbowax 20M80.619.Sun, Siepmann, et al., 200630. m/0.25 mm/0.25 μm, Helium

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax 20M640.Labropoulos, Palmer, et al., 1982Helium, 10. K/min; Column length: 31. m; Column diameter: 0.50 mm; Tstart: 40. C; Tend: 200. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryCarbowax 20M590.Vinogradov, 2004Program: not specified
CapillaryDB-Wax616.Peng, Yang, et al., 1991Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Pihlaja and Heikkil, 1968
Pihlaja, K.; Heikkil, J., Heats of combustion. Diethyl ether and 1,1-diethoxyethane, Acta Chem. Scand., 1968, 22, 2731-2732. [all data]

Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P., Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]

Pilcher, Skinner, et al., 1963
Pilcher, G.; Skinner, H.A.; Pell, A.S.; Pope, A.E., Measurements of heats of combustion by flame calorimetry. Part 1.-Diethyl ether, ethyl vinyl ether and divinyl ether, Trans. Faraday Soc., 1963, 59, 316-330. [all data]

Murrin and Goldhagen, 1957
Murrin, J.W.; Goldhagen, S., Determination of the C-O bond energy from the heats of combustion of four aliphatic ethers, NAVORD Report No. 5491, U.S. Naval Powder Factory Res. & Dev. Dept., 1957, 1-14. [all data]

Counsell J.F., 1971
Counsell J.F., Thermodynamic properties of organic oxygen compounds. Part XXVI. Diethyl ether, J. Chem. Soc. A, 1971, 313-316. [all data]

Cope C.S., 1959
Cope C.S., Equilibria in the hydration of ethylene at elevated pressures and temperatures, A. I. Ch. E. Journal, 1959, 5, 10-16. [all data]

Stull D.R., 1969
Stull D.R., Jr., The Chemical Thermodynamics of Organic Compounds. Wiley, New York, 1969. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Jennings W.H., 1934
Jennings W.H., Specific heat of furan and ethyl ether vapors, J. Phys. Chem., 1934, 38, 747-751. [all data]

Jatkar S.K.K., 1939
Jatkar S.K.K., Supersonic velocity in gases and vapors. V. Heat capacity of vapors of acetone, benzene, cyclohexane, hexane and methyl, ethyl and propyl ethers, J. Indian Inst. Sci., 1939, A22, 19-37. [all data]

Valentin F.H.H., 1950
Valentin F.H.H., Equilibrium and thermodynamic relation in the vapor-phase catalytic dehydration of ethyl alcohol to ethyl ether, J. Chem. Soc., 1950, 498-500. [all data]

Szulejko and McMahon, 1991
Szulejko, J.E.; McMahon, T.B., A Pulsed Electron Beam, Variable Temperature, High Pressure Mass Spectrometric Reevaluation of the Proton Affinity Difference Between 2-Methylpropene and Ammonia, Int. J. Mass Spectrom. Ion Proc., 1991, 109, 279, https://doi.org/10.1016/0168-1176(91)85109-Y . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Meot-Ner (Mautner), 1983
Meot-Ner (Mautner), M., The Ionic Hydrogen Bond. 3. Multiple and -CH+...O- Bonds. Complexes of Ammonium Ions with Polyethers and Crown Ethers, J. Am. Chem. Soc., 1983, 105, 15, 4912, https://doi.org/10.1021/ja00353a012 . [all data]

Allinger, Glaser, et al., 1981
Allinger, N.L.; Glaser, J.A.; Davis, H.E., Heats of hydrogenation of some vinyl ethers and related compounds, J. Org. Chem., 1981, 46, 658-661. [all data]

Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E., Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds, J. Am. Chem. Soc., 1938, 60, 440-450. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Guo, Conklin, et al., 1989
Guo, B.C.; Conklin, B.J.; Castleman, A.W., Thermochemical Properties of Ion Complexes Na+(M)n in the Gas Phase, J. Am. Chem. Soc., 1989, 111, 17, 6506, https://doi.org/10.1021/ja00199a005 . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Bogdanov, Lee, et al., 2001
Bogdanov, B.; Lee, H.J.S.; McMahon, T.B., Influence of fluorine substitution on the structures and thermochemistry of chloride ion-ether complexes in the gas phase, Int. J. Mass Spectrom., 2001, 210, 387-402, https://doi.org/10.1016/S1387-3806(01)00404-3 . [all data]

Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P., Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M, J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011 . [all data]

Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S., Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques, J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020 . [all data]

Connett, 1972
Connett, J.E., Chemical equilibria 4. Enthalpy of dehydration of ethanol to diethyl ether by measurement of equilibrium constants in ethanol + ether+ water by a vapour flow technique, J. Chem. Thermodyn., 1972, 4, 135-138. [all data]

Gurevich and Roshchina, 2003
Gurevich, K.B.; Roshchina, T.M., G as chromatography study of silica modified with polyfluoroalkyl groups, J. Chromatogr. A, 2003, 1008, 97-103. [all data]

Winskowski, 1983
Winskowski, J., Gaschromatographische Identifizierung von Stoffen anhand von Indexziffem und unterschiedlichen Detektoren, Chromatographia, 1983, 17, 3, 160-165, https://doi.org/10.1007/BF02271041 . [all data]

Becerra, Sánchez, et al., 1982
Becerra, M.R.; Sánchez, E.F.; Domínguez, J.A.G.; Muñoz, J.G.; Molera, M.J., The use of gaseous and liquid n-paraffins in GC identification of oxidation products of acetondimethyl acetal, J. Chromatogr. Sci., 1982, 20, 8, 363-366, https://doi.org/10.1093/chromsci/20.8.363 . [all data]

Goebel, 1982
Goebel, K.-J., Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe, J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5 . [all data]

Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S., Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]

Riedo, Fritz, et al., 1976
Riedo, F.; Fritz, D.; Tarján, G.; Kováts, E.Sz., A tailor-made C87 hydrocarbon as a possible non-polar standard stationary phase for gas chromatography, J. Chromatogr., 1976, 126, 63-83, https://doi.org/10.1016/S0021-9673(01)84063-2 . [all data]

Golovnya and Garbuzov, 1974
Golovnya, R.V.; Garbuzov, V.G., Effect of heteroatom in aliphatic sulfur- and oxygen-containing compounds on the values of the retention indices in gas chromatography, Izv. Akad. Nauk SSSR Ser. Khim., 1974, 7, 1519-1521. [all data]

Vernon, 1971
Vernon, F., An investigation into hydrogen bonding in gas-liquid chromatography, J. Chromatogr., 1971, 63, 249-257, https://doi.org/10.1016/S0021-9673(01)85637-5 . [all data]

Jonas, Janák, et al., 1966
Jonas, J.; Janák, J.; Kratochvíl, M., Structural investigations with the aid of Kovats retention index system on one (nonpolar) stationary phase, J. Gas Chromatogr., 1966, 4, 9, 332-335, https://doi.org/10.1093/chromsci/4.9.332 . [all data]

Wehrli and Kováts, 1959
Wehrli, A.; Kováts, E., Gas-chromatographische Charakterisierung ogranischer Verbindungen. Teil 3: Berechnung der Retentionsindices aliphatischer, alicyclischer und aromatischer Verbindungen, Helv. Chim. Acta, 1959, 7, 7, 2709-2736, https://doi.org/10.1002/hlca.19590420745 . [all data]

Anderson, Jurel, et al., 1973
Anderson, A.; Jurel, S.; Shymanska, M.; Golender, L., Gas-liquid chromatography of some aliphatic and heterocyclic mono- and pollyfunctional amines. VII. Retention indices of amines in some polar and unpolar stationary phases, Latv. PSR Zinat. Akad. Vestis Kim. Ser., 1973, 1, 51-63. [all data]

Shimadzu, 2003
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 2), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Chen, Kuo, et al., 1982
Chen, C.-C.; Kuo, M.-C.; Hwang, L.S.; Wu, J.S.-B.; Wu, C.-M., Headspace components of passion fruit juice, J. Agric. Food Chem., 1982, 30, 6, 1211-1215, https://doi.org/10.1021/jf00114a052 . [all data]

Shimadzu, 2003, 2
Shimadzu, Gas chromatography analysis of organic solvents using capillary columns (No. 3), 2003, retrieved from http://www.shimadzu.com/apps/form.cfm. [all data]

Dufka, Malinsky, et al., 1971
Dufka, O.; Malinsky, J.; Vladyka, J., Sorpcni materialy pro plynovou chromatographii - III, Chemicky promysl., 1971, 21/46, 9, 459-463. [all data]

Kotowska, Zalikowski, et al., 2012
Kotowska, U.; Zalikowski, M.; Isidorov, V.A., HS-SPME/GC-MS analysis of volatile and semi-volatile organic compounds emitted from municipal sewage sludge, Environ. Monit. Asses., 2012, 184, 5, 2893-2907, https://doi.org/10.1007/s10661-011-2158-8 . [all data]

Zenkevich, Eliseenkov, et al., 2011
Zenkevich, I.G.; Eliseenkov, E.V.; Kasatochkin, A.N.; Ukolov, A.I., Identification of the products of nonregioselective organic reactions by chromatography - mass spectrometry: chloro derivatives of dialkyl ethers, Rus. J. Anal. Chem., 2011, 66, 14, 1445-1454, https://doi.org/10.1134/S1061934811140218 . [all data]

Savel'eva, Zenkevich, et al., 2003
Savel'eva, E.I.; Zenkevich, I.G.; Radilov, A.S., Identification the Products of Chemical Neutralization of O-Isobutyl-S-(2-diethylaminoethyl)methylthiophosphonate in the Composition of Bitumen-Salt Matrices, Zh. Anal. Khim. (Rus.), 2003, 58, 2, 135-145. [all data]

Habu, Flath, et al., 1985
Habu, T.; Flath, R.A.; Mon, T.R.; Morton, J.F., Volatile components of Rooibos tea (Aspalathus linearis), J. Agric. Food Chem., 1985, 33, 2, 249-254, https://doi.org/10.1021/jf00062a024 . [all data]

Rotsatschakul, Visesanguan, et al., 2009
Rotsatschakul, P.; Visesanguan, W.; Smitinont, T.; Chaiseri, S., Changes in volatile compounds during fermentation of nham (Thai fermented sausage), Int. Food Res. J., 2009, 16, 391-414. [all data]

Garcia-Estaban, Ansorena, et al., 2004
Garcia-Estaban, M.; Ansorena, D.; Astiasaran, I.; Martin, D.; Ruiz, J., Comparison of simultaneous distillation extraction (SDE) and solid-phase microextraction (SPME) for the analysis of volatile compounds in dry-cured ham, J. Sci. Food Agric., 2004, 84, 11, 1364-1370, https://doi.org/10.1002/jsfa.1826 . [all data]

Garcia-Estaban, Ansorena, et al., 2004, 2
Garcia-Estaban, M.; Ansorena, D.; Astiasarán, I.; Ruiz, J., Study of the effect of different fiber coatings and extraction conditions on dry cured ham volatile compounds extracted by solid-phase microextraction (SPME), Talanta, 2004, 64, 2, 458-466, https://doi.org/10.1016/j.talanta.2004.03.007 . [all data]

Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D., Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]

Zenkevich, 1997
Zenkevich, I.G., Influence of the Variations of Dynamics Molecular Parameterts on the Additivity of Chromatigraphic Retention Indices of Products of Organic Reactions Relative to Initial Reagents, Dokl. Akad. Nauk (Rus.), 1997, 353, 5, 625-627. [all data]

Zenkevich, Chupalov, et al., 1996
Zenkevich, I.G.; Chupalov, A.A.; Herzschuh, R., Correlation of the Increments of Gas Chromatographic Retention Indices with the Differences of Innermolecular Energies of Reagents and Products of Chemical Reactions, Zh. Org. Khim. (Rus.), 1996, 32, 11, 1685-1691. [all data]

Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J., Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning, Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111 . [all data]

Kawai, Ishida, et al., 1991
Kawai, T.; Ishida, Y.; Kakiuchi, H.; Ikeda, N.; Higashida, T.; Nakamura, S., Flavor components of dried squid, J. Agric. Food Chem., 1991, 39, 4, 770-777, https://doi.org/10.1021/jf00004a031 . [all data]

Sun, Siepmann, et al., 2006
Sun, L.; Siepmann, J.I.; Klotz, W.L.; Schure, M.R., retention in gas-liquid chromatography with a polyethylene oxide stationary phase: molecular simulation and experiment, J. Chromatogr. A, 2006, 1126, 1-2, 373-380, https://doi.org/10.1016/j.chroma.2006.05.084 . [all data]

Labropoulos, Palmer, et al., 1982
Labropoulos, A.E.; Palmer, J.K.; Tao, P., Flavor evaluation and characterization of yogurt as affected by ultra-high temperature and vat processes, J. Dairy Sci., 1982, 65, 2, 191-196, https://doi.org/10.3168/jds.S0022-0302(82)82176-0 . [all data]

Vinogradov, 2004
Vinogradov, B.A., Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]

Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F., Prediction of rentention idexes. II. Structure-retention index relationship on polar columns, J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Gas Chromatography, References