Ethyl ether

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-252.7 ± 2.0kJ/molCcbPihlaja and Heikkil, 1968Reanalyzed by Pedley, Naylor, et al., 1986, Original value = -250.3 ± 1.8 kJ/mol; ALS
Δfgas-252.2 ± 0.79kJ/molCmPilcher, Skinner, et al., 1963ALS
Δfgas-244.kJ/molCcbMurrin and Goldhagen, 1957ALS
Quantity Value Units Method Reference Comment
Δcgas-2726.3 ± 1.8kJ/molCcbPihlaja and Heikkil, 1968Corresponding Δfgas = -276.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcgas-2751.1 ± 0.75kJ/molCmPilcher, Skinner, et al., 1963Corresponding Δfgas = -252.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
gas342.2J/mol*KN/ACounsell J.F., 1971Other third-law entropy values at 298.15 K are 342.46 [ Cope C.S., 1959], 342.33 [ Stull D.R., 1969], and 342.60 J/mol*K [ Chao J., 1986].; GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
62.50100.Chao J., 1986p=1 bar.; GT
84.80150.
99.70200.
114.30273.15
119.46 ± 0.15298.15
119.86300.
142.81400.
165.77500.
186.35600.
204.35700.
220.04800.
233.74900.
245.681000.
256.081100.
265.121200.
272.971300.
279.811400.
285.761500.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
121.94309.98Counsell J.F., 1971Other experimental values of heat capacity [ Jennings W.H., 1934, Jatkar S.K.K., 1939, Valentin F.H.H., 1950] are believed to be less reliable (see [ Chao J., 1986]).; GT
126.57329.99
131.32350.00
137.21375.00
143.27400.01
149.10424.99
155.11450.04

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-271.2 ± 1.9kJ/molCcbMurrin and Goldhagen, 1957ALS
Quantity Value Units Method Reference Comment
Δcliquid-2732.1 ± 1.9kJ/molCcbMurrin and Goldhagen, 1957Corresponding Δfliquid = -271.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid253.5J/mol*KN/ACounsell, Lee, et al., 1971DH
liquid252.7J/mol*KN/AParks, Kelley, et al., 1929Extrapolation below 90 K, 58.6 J/mol*K. Revision of previous data.; DH
liquid283.3J/mol*KN/AParks and Huffman, 1926Extrapolation below 90 K, 88.70 J/mol*K.; DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
172.5298.15Counsell, Lee, et al., 1971T = 15 to 300 K.; DH
171.88293.15Mazur, 1939T = -112 to 20°C.; DH
172.0293.Mazur, 1939, 2T = -110 to 20°C.; DH
167.4290.Kurnakov and Voskresenskaya, 1936DH
164.8255.2Aoyama and Kanda, 1935T = 80 to 255 K. Value is unsmoothed experimental datum.; DH
179.9308.Bennewitz and Wendroth, 1927T = 308 to 488 K. Value is unsmoothed experimental datum. Pressure 40 atmospheres.; DH
170.7290.0Parks and Huffman, 1926T = 76 to 290 K. Value is unsmoothed experimental datum.; DH
179.1286.6Keyes and Beattie, 1924T = 274, 286 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil307.7 ± 0.4KAVGN/AAverage of 20 out of 21 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus154. ± 7.KAVGN/AAverage of 13 out of 14 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple156.92KN/AWilhoit, Chao, et al., 1985Uncertainty assigned by TRC = 0.05 K; TRC
Ttriple149.86KN/ACounsell, Lee, et al., 1971, 2Crystal phase 2 phase; Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple156.92KN/ACounsell, Lee, et al., 1971, 2Crystal phase 1 phase; Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple156.8KN/AParks and Huffman, 1926, 2Uncertainty assigned by TRC = 0.2 K; TRC
Quantity Value Units Method Reference Comment
Tc467. ± 2.KAVGN/AAverage of 29 out of 30 values; Individual data points
Quantity Value Units Method Reference Comment
Pc36. ± 1.barAVGN/AAverage of 16 out of 17 values; Individual data points
Quantity Value Units Method Reference Comment
Vc0.274l/molN/AKobe, Ravicz, et al., 1956Uncertainty assigned by TRC = 0.005 l/mol; TRC
Quantity Value Units Method Reference Comment
ρc3.5 ± 0.4mol/lAVGN/AAverage of 10 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap27.1 ± 0.5kJ/molAVGN/AAverage of 6 values; Individual data points

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
26.52307.6N/AMajer and Svoboda, 1985 
27.530285.0N/AKeyes and Beattie, 1924P = 101.325 kPa; DH
28.1301.AStephenson and Malanowski, 1987Based on data from 286. to 329. K.; AC
26.9322.AStephenson and Malanowski, 1987Based on data from 307. to 457. K.; AC
27.5320.AStephenson and Malanowski, 1987Based on data from 305. to 360. K.; AC
26.7432.AStephenson and Malanowski, 1987Based on data from 417. to 467. K.; AC
29.5265.AStephenson and Malanowski, 1987Based on data from 250. to 329. K. See also Ambrose, Sprake, et al., 1972 and Ambrose, Ellender, et al., 1976.; AC
27.247 ± 0.005295.63VCounsell, Lee, et al., 1971, 3ALS
28.4278.N/ATaylor and Smith, 1922Based on data from 213. to 293. K.; AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
281. to 313.43.010.2786466.7Majer and Svoboda, 1985 

Entropy of vaporization

ΔvapS (J/mol*K) Temperature (K) Reference Comment
96.60285.0Keyes and Beattie, 1924P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
250.04 to 328.574.02201062.64-44.93Ambrose, Sprake, et al., 1972Coefficents calculated by NIST from author's data.
350.14 to 466.734.469881354.913-5.537Ambrose, Sprake, et al., 1972Coefficents calculated by NIST from author's data.
212.4 to 293.024.133771102.878-40.46Taylor and Smith, 1922Coefficents calculated by NIST from author's data.

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
7.19156.9Counsell, Lee, et al., 1971, 3AC
7.301156.8Parks and Huffman, 1926DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
46.6156.8Parks and Huffman, 1926DH

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
6.820149.86crystaline, IIliquidCounsell, Lee, et al., 1971DH
7.190156.92crystaline, IliquidCounsell, Lee, et al., 1971Metastable crystal.; DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
45.5149.86crystaline, IIliquidCounsell, Lee, et al., 1971DH
45.82156.92crystaline, IliquidCounsell, Lee, et al., 1971Metastable; DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar
B - John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C4H11O+ + Ethyl ether = (C4H11O+ • Ethyl ether)

By formula: C4H11O+ + C4H10O = (C4H11O+ • C4H10O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr131.kJ/molPHPMSSzulejko and McMahon, 1991gas phase; M
Δr127.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr160.J/mol*KPHPMSSzulejko and McMahon, 1991gas phase; M
Δr129.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr88.3kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C5H11O+ + Ethyl ether = (C5H11O+ • Ethyl ether)

By formula: C5H11O+ + C4H10O = (C5H11O+ • C4H10O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr123.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr86.6kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C6H15O+ + Ethyl ether = (C6H15O+ • Ethyl ether)

By formula: C6H15O+ + C4H10O = (C6H15O+ • C4H10O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr123.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr126.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr85.4kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C6H15O+ + Ethyl ether = (C6H15O+ • Ethyl ether)

By formula: C6H15O+ + C4H10O = (C6H15O+ • C4H10O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr109.kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr129.J/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Quantity Value Units Method Reference Comment
Δr70.3kJ/molICRLarson and McMahon, 1982gas phase; switching reaction((CH3)2OH+)(CH3)2O, Entropy change calculated or estimated; Grimsrud and Kebarle, 1973, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M

C3H9Si+ + Ethyl ether = (C3H9Si+ • Ethyl ether)

By formula: C3H9Si+ + C4H10O = (C3H9Si+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr185.kJ/molPHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr125.J/mol*KN/AWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
127.468.PHPMSWojtyniak and Stone, 1986gas phase; switching reaction,Thermochemical ladder((CH3)3Si+)H2O, Entropy change calculated or estimated; M

C6H14N+ + Ethyl ether = (C6H14N+ • Ethyl ether)

By formula: C6H14N+ + C4H10O = (C6H14N+ • C4H10O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr92.0kJ/molPHPMSMeot-Ner, 1984gas phase; M
Δr91.6kJ/molPHPMSMeot-Ner (Mautner), 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr133.J/mol*KPHPMSMeot-Ner, 1984gas phase; M
Δr133.J/mol*KPHPMSMeot-Ner (Mautner), 1983gas phase; M

CH6N+ + Ethyl ether = (CH6N+ • Ethyl ether)

By formula: CH6N+ + C4H10O = (CH6N+ • C4H10O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr92.0kJ/molPHPMSMeot-Ner, 1984gas phase; M
Δr92.0kJ/molPHPMSMeot-Ner (Mautner), 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr105.J/mol*KPHPMSMeot-Ner, 1984gas phase; M
Δr105.J/mol*KPHPMSMeot-Ner (Mautner), 1983gas phase; M

Ethene, ethoxy- + Hydrogen = Ethyl ether

By formula: C4H8O + H2 = C4H10O

Quantity Value Units Method Reference Comment
Δr-110.9 ± 0.59kJ/molChydAllinger, Glaser, et al., 1981liquid phase; solvent: Hexane; ALS
Δr-110.8 ± 0.3kJ/molChydDolliver, Gresham, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -112. ± 3. kJ/mol; At 355°K; ALS

Sodium ion (1+) + Ethyl ether = (Sodium ion (1+) • Ethyl ether)

By formula: Na+ + C4H10O = (Na+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr130. ± 1.kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr118.J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

Free energy of reaction

ΔrG° (kJ/mol) T (K) Method Reference Comment
89.1298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

C5H6N+ + Ethyl ether = (C5H6N+ • Ethyl ether)

By formula: C5H6N+ + C4H10O = (C5H6N+ • C4H10O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr94.1kJ/molPHPMSMeot-Ner (Mautner), 1983gas phase; M
Quantity Value Units Method Reference Comment
Δr138.J/mol*KPHPMSMeot-Ner (Mautner), 1983gas phase; M

Nitric oxide anion + Ethyl ether = (Nitric oxide anion • Ethyl ether)

By formula: NO- + C4H10O = (NO- • C4H10O)

Quantity Value Units Method Reference Comment
Δr173.kJ/molICRReents and Freiser, 1981gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M

Vinyl ether + 2Hydrogen = Ethyl ether

By formula: C4H6O + 2H2 = C4H10O

Quantity Value Units Method Reference Comment
Δr-237.4 ± 0.42kJ/molChydDolliver, Gresham, et al., 1938gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -239.5 ± 0.4 kJ/mol; At 355°K; ALS

Chlorine anion + Ethyl ether = C4H10ClO-

By formula: Cl- + C4H10O = C4H10ClO-

Quantity Value Units Method Reference Comment
Δr37.7 ± 1.7kJ/molTDAsBogdanov, Lee, et al., 2001gas phase; B
Quantity Value Units Method Reference Comment
Δr14. ± 4.2kJ/molTDAsBogdanov, Lee, et al., 2001gas phase; B

(Sodium ion (1+) • 2Ethyl ether) + Ethyl ether = (Sodium ion (1+) • 3Ethyl ether)

By formula: (Na+ • 2C4H10O) + C4H10O = (Na+ • 3C4H10O)

Quantity Value Units Method Reference Comment
Δr69. ± 1.kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr123.J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

(Sodium ion (1+) • Ethyl ether) + Ethyl ether = (Sodium ion (1+) • 2Ethyl ether)

By formula: (Na+ • C4H10O) + C4H10O = (Na+ • 2C4H10O)

Quantity Value Units Method Reference Comment
Δr96. ± 1.kJ/molHPMSGuo, Conklin, et al., 1989gas phase; M
Quantity Value Units Method Reference Comment
Δr117.J/mol*KHPMSGuo, Conklin, et al., 1989gas phase; M

Potassium ion (1+) + Ethyl ether = (Potassium ion (1+) • Ethyl ether)

By formula: K+ + C4H10O = (K+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr93.3kJ/molHPMSDavidson and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr103.J/mol*KHPMSDavidson and Kebarle, 1976gas phase; M

Magnesium ion (1+) + Ethyl ether = (Magnesium ion (1+) • Ethyl ether)

By formula: Mg+ + C4H10O = (Mg+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr280. ± 20.kJ/molICROperti, Tews, et al., 1988gas phase; switching reaction,Thermochemical ladder(Mg+)CH3OH; M

2Ethanol = Ethyl ether + Water

By formula: 2C2H6O = C4H10O + H2O

Quantity Value Units Method Reference Comment
Δr-24.0 ± 0.1kJ/molEqkConnett, 1972gas phase; ALS

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: Tanya L. Myers, Russell G. Tonkyn, Ashley M. Oeck, Tyler O. Danby, John S. Loring, Matthew S. Taubman, Stephen W. Sharpe, Jerome C. Birnbaum, and Timothy J. Johnson


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW- 71
NIST MS number 229016

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Pihlaja and Heikkil, 1968
Pihlaja, K.; Heikkil, J., Heats of combustion. Diethyl ether and 1,1-diethoxyethane, Acta Chem. Scand., 1968, 22, 2731-2732. [all data]

Pedley, Naylor, et al., 1986
Pedley, J.B.; Naylor, R.D.; Kirby, S.P., Thermochemical Data of Organic Compounds, Chapman and Hall, New York, 1986, 1-792. [all data]

Pilcher, Skinner, et al., 1963
Pilcher, G.; Skinner, H.A.; Pell, A.S.; Pope, A.E., Measurements of heats of combustion by flame calorimetry. Part 1.-Diethyl ether, ethyl vinyl ether and divinyl ether, Trans. Faraday Soc., 1963, 59, 316-330. [all data]

Murrin and Goldhagen, 1957
Murrin, J.W.; Goldhagen, S., Determination of the C-O bond energy from the heats of combustion of four aliphatic ethers, NAVORD Report No. 5491, U.S. Naval Powder Factory Res. & Dev. Dept., 1957, 1-14. [all data]

Counsell J.F., 1971
Counsell J.F., Thermodynamic properties of organic oxygen compounds. Part XXVI. Diethyl ether, J. Chem. Soc. A, 1971, 313-316. [all data]

Cope C.S., 1959
Cope C.S., Equilibria in the hydration of ethylene at elevated pressures and temperatures, A. I. Ch. E. Journal, 1959, 5, 10-16. [all data]

Stull D.R., 1969
Stull D.R., Jr., The Chemical Thermodynamics of Organic Compounds. Wiley, New York, 1969. [all data]

Chao J., 1986
Chao J., Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties, J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]

Jennings W.H., 1934
Jennings W.H., Specific heat of furan and ethyl ether vapors, J. Phys. Chem., 1934, 38, 747-751. [all data]

Jatkar S.K.K., 1939
Jatkar S.K.K., Supersonic velocity in gases and vapors. V. Heat capacity of vapors of acetone, benzene, cyclohexane, hexane and methyl, ethyl and propyl ethers, J. Indian Inst. Sci., 1939, A22, 19-37. [all data]

Valentin F.H.H., 1950
Valentin F.H.H., Equilibrium and thermodynamic relation in the vapor-phase catalytic dehydration of ethyl alcohol to ethyl ether, J. Chem. Soc., 1950, 498-500. [all data]

Counsell, Lee, et al., 1971
Counsell, J.F.; Lee, D.A.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part XXVI. Diethyl ether, 1971, J. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Parks and Huffman, 1926
Parks, G.S.; Huffman, H.M., Thermal data on organic compounds. IV. The heat capacities, entropies and free energies of normal propyl alcohol, ethyl ether and dulcitol, J. Am. Chem. Soc., 1926, 48, 2788-2793. [all data]

Mazur, 1939
Mazur, J., Über die spezifische Wärme des Äthyläthers, Acta Phys. Pol., 1939, 7, 318-326. [all data]

Mazur, 1939, 2
Mazur, J., Über die spezifische Wärme des Äthyläthers, des Nitrobenzols und des Schwefelkohlenstoffs, Z. Physik., 1939, 113, 710-720. [all data]

Kurnakov and Voskresenskaya, 1936
Kurnakov, N.S.; Voskresenskaya, N.K., Calorimetry of liquid binary systems, Izv. Akad. Nauk SSSR, Otdel. Mat. i Estestv. Nauk. Ser. Khim, 1936, 1936, 439-461. [all data]

Aoyama and Kanda, 1935
Aoyama, S.; Kanda, E., Studies on the heat capacities at low temperature. Report I. Heat capacities of some organic substances at low temperature, Sci. Rept. Tohoku Imp. Univ. [1]24, 1935, 107-115. [all data]

Bennewitz and Wendroth, 1927
Bennewitz, K.; Wendroth, H., Untersuchungen im kritischen Gebiet. II. Bestimmung der wahren spezifischen Wärme Cp des flüssigne Äthyläthers oberund unterhalb der kritischen Temperatur, Z. Phys. Chem., 1927, 125, 111-134. [all data]

Keyes and Beattie, 1924
Keyes, F.G.; Beattie, J.A., A calorimeter for measuring specific heats and heats of vaporization of liquids. The specific heat and heat of vaporization of liquid ethyl ether at 0° and 12°, J. Am. Chem. Soc., 1924, 46, 1753-1760. [all data]

Wilhoit, Chao, et al., 1985
Wilhoit, R.C.; Chao, J.; Hall, K.R., Thermodynamic Properties of Key Organic Compounds in the Carbon Range C1 to C4. Part 1. Properties of Condensed Phases, J. Phys. Chem. Ref. Data, 1985, 14, 1. [all data]

Counsell, Lee, et al., 1971, 2
Counsell, J.F.; Lee, D.A.; Martin, J.F., Thermodynamic properties of organic oxygen compounds: xxvi diethyl ether, J. Chem. Soc. A, 1971, 1971, 313-6. [all data]

Parks and Huffman, 1926, 2
Parks, G.S.; Huffman, H.M., Thermal data on organic compounds: IV the heat capacites, entropies, and free energies of normal propyl alcohol, ethyl ether, and dulcitol, J. Am. Chem. Soc., 1926, 48, 2788-93. [all data]

Kobe, Ravicz, et al., 1956
Kobe, K.A.; Ravicz, A.E.; Vohra, S.P., Critical Properties and Vapor Pressures of Some Ethers and Heterocyclic Compounds, J. Chem. Eng. Data, 1956, 1, 50. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Ambrose, Sprake, et al., 1972
Ambrose, D.; Sprake, C.H.S.; Townsend, R., Thermodynamic properties of organic oxygen compounds XXIX. The vapour pressure of diethyl ether, The Journal of Chemical Thermodynamics, 1972, 4, 2, 247-254, https://doi.org/10.1016/0021-9614(72)90063-8 . [all data]

Ambrose, Ellender, et al., 1976
Ambrose, D.; Ellender, J.H.; Sprake, C.H.S.; Townsend, R., Thermodynamic properties of organic oxygen compounds XLIII. Vapour pressures of some ethers, The Journal of Chemical Thermodynamics, 1976, 8, 2, 165-178, https://doi.org/10.1016/0021-9614(76)90090-2 . [all data]

Counsell, Lee, et al., 1971, 3
Counsell, J.F.; Lee, D.A.; Martin, J.F., Thermodynamic properties of organic oxygen compounds. Part XXVI. Diethyl ether, J. Chem. Soc. A, 1971, 313. [all data]

Taylor and Smith, 1922
Taylor, Robert S.; Smith, Leighton B., THE VAPOR PRESSURES, DENSITIES AND SOME DERIVED QUANTITIES FOR ETHER AT LOW TEMPERATURES, J. Am. Chem. Soc., 1922, 44, 11, 2450-2463, https://doi.org/10.1021/ja01432a012 . [all data]

Szulejko and McMahon, 1991
Szulejko, J.E.; McMahon, T.B., A Pulsed Electron Beam, Variable Temperature, High Pressure Mass Spectrometric Reevaluation of the Proton Affinity Difference Between 2-Methylpropene and Ammonia, Int. J. Mass Spectrom. Ion Proc., 1991, 109, 279, https://doi.org/10.1016/0168-1176(91)85109-Y . [all data]

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Grimsrud and Kebarle, 1973
Grimsrud, E.P.; Kebarle, P., Gas Phase Ion Equilibria Studies of the Solvation of the Hydrogen Ion by Methanol, Dimethyl Ether and Water. Effect of Hydrogen Bonding, J. Am. Chem. Soc., 1973, 95, 24, 7939, https://doi.org/10.1021/ja00805a002 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Wojtyniak and Stone, 1986
Wojtyniak, A.C.M.; Stone, A.J., A High-Pressure Mass Spectrometric Study of the Bonding of Trimethylsilylium to Oxygen and Aromatic Bases, Can. J. Chem., 1986, 74, 59. [all data]

Meot-Ner, 1984
Meot-Ner, (Mautner)M., The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects, J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015 . [all data]

Meot-Ner (Mautner), 1983
Meot-Ner (Mautner), M., The Ionic Hydrogen Bond. 3. Multiple and -CH+...O- Bonds. Complexes of Ammonium Ions with Polyethers and Crown Ethers, J. Am. Chem. Soc., 1983, 105, 15, 4912, https://doi.org/10.1021/ja00353a012 . [all data]

Allinger, Glaser, et al., 1981
Allinger, N.L.; Glaser, J.A.; Davis, H.E., Heats of hydrogenation of some vinyl ethers and related compounds, J. Org. Chem., 1981, 46, 658-661. [all data]

Dolliver, Gresham, et al., 1938
Dolliver, M.A.; Gresham, T.L.; Kistiakowsky, G.B.; Smith, E.A.; Vaughan, W.E., Heats of organic reactions. VI. Heats of hydrogenation of some oxygen-containing compounds, J. Am. Chem. Soc., 1938, 60, 440-450. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Guo, Conklin, et al., 1989
Guo, B.C.; Conklin, B.J.; Castleman, A.W., Thermochemical Properties of Ion Complexes Na+(M)n in the Gas Phase, J. Am. Chem. Soc., 1989, 111, 17, 6506, https://doi.org/10.1021/ja00199a005 . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]

Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S., Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes, J. Am. Chem. Soc., 1981, 103, 2791. [all data]

Farid and McMahon, 1978
Farid, R.; McMahon, T.B., Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy, Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0 . [all data]

Bogdanov, Lee, et al., 2001
Bogdanov, B.; Lee, H.J.S.; McMahon, T.B., Influence of fluorine substitution on the structures and thermochemistry of chloride ion-ether complexes in the gas phase, Int. J. Mass Spectrom., 2001, 210, 387-402, https://doi.org/10.1016/S1387-3806(01)00404-3 . [all data]

Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P., Binding Energies and Stabilities of Potassium Ion Complexes from Studies of Gas Phase Ion Equilibria K+ + M = K+.M, J. Am. Chem. Soc., 1976, 98, 20, 6133, https://doi.org/10.1021/ja00436a011 . [all data]

Operti, Tews, et al., 1988
Operti, L.; Tews, E.C.; Freiser, B.S., Determination of Gas-Phase Ligand Binding Energies to Mg+ by FTMS Techniques, J. Am. Chem. Soc., 1988, 110, 12, 3847, https://doi.org/10.1021/ja00220a020 . [all data]

Connett, 1972
Connett, J.E., Chemical equilibria 4. Enthalpy of dehydration of ethanol to diethyl ether by measurement of equilibrium constants in ethanol + ether+ water by a vapour flow technique, J. Chem. Thermodyn., 1972, 4, 135-138. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References