Pantolactone
- Formula: C6H10O3
- Molecular weight: 130.1418
- IUPAC Standard InChIKey: SERHXTVXHNVDKA-SCSAIBSYSA-N
- CAS Registry Number: 599-04-2
- Chemical structure:
This structure is also available as a 2d Mol file - Stereoisomers:
- Other names: 2(3H)-Furanone, dihydro-3-hydroxy-4,4-dimethyl-, (R)-; 2(3H)-Furanone, dihydro-3-hydroxy-4,4-dimethyl-, D-(-)-; (D)-Pantolactone; D-(-)-Pantolactone; D-(-)-Pantoyl lactone; Pantolyl lactone; Pantothenic lactone; Pantoyl lactone; D-(-)-Pantolyl lactone; D-(-)-Pantoic acid lactone; D(-)-2-Hydroxy-3,3-dimethyl-γ-butyrolactone; D-(-)-αHydroxy-β,β-dimethyl-γ-butyrolactone; (R)-(-)-Pantolactone; 2(3H)-Furanone, dihydro-3-hydroxy-4,4-dimethyl-, (3R)-; 2-hydroxy-3,3-dimethyl-γ-butyrolactone; Dihydro-3-hydroxy-4,4-dimethyl-2(3H)-furanone, pantolactone; Dihydro-3-hydroxy-4,4-dimethyl-2(3H)-furanone, R-(-)-pantolactone; α-hydroxy-β,β-dimethyl-γ-butyrolactone
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Phase change data
Go To: Top, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Robert L. Brown and Stephen E. Stein
Reduced pressure boiling point
Tboil (K) | Pressure (atm) | Reference |
---|---|---|
394.2 | 0.020 | Aldrich Chemical Company Inc., 1990 |
IR Spectrum
Go To: Top, Phase change data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Coblentz Society, Inc.
Condensed Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Except where noted, spectra from this collection were measured on dispersive instruments, often in carefully selected solvents, and hence may differ in detail from measurements on FTIR instruments or in other chemical environments. More information on the manner in which spectra in this collection were collected can be found here.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View scan of original (hardcopy) spectrum.
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | COBLENTZ SOCIETY Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Source reference | COBLENTZ NO. 911 |
Date | 1960 |
Name(s) | 3-hydroxy-4,4-dimethyldihydro-2(3H)-furanone |
State | SOLUTION (5% CHCl3) |
Instrument | Not specified, most likely a prism, grating, or hybrid spectrometer. |
Path length | 0.009 CM SPECTRAL CONTAMINATION DUE TO INACTIVE CHCl3 AROUND 730-800 CM-1 |
Resolution | 4 |
Sampling procedure | TRANSMISSION |
Data processing | DIGITIZED BY NIST FROM HARD COPY |
Gas Chromatography
Go To: Top, Phase change data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Van Den Dool and Kratz RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Carbowax 20M | 2028. | Boido, Lloret, et al., 2003 | 25. m/0.32 mm/0.25 μm, H2; Program: 40C (8min) => 3C/min => 180C => 20C/min => 230C |
Normal alkane RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | RTX-Wax | 2029. | Prososki, Etzel, et al., 2007 | 30. m/0.25 mm/0.5 μm, He, 40. C @ 5. min, 10. K/min, 220. C @ 10. min |
Capillary | DB-Wax Etr | 2077. | Ibarz, Ferreira, et al., 2006 | 60. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 2. K/min, 230. C @ 100. min |
Capillary | DB-Wax | 1998. | Schirack, Drake, et al., 2006 | 30. m/0.25 mm/0.25 μm, 40. C @ 3. min, 8. K/min, 200. C @ 20. min |
Capillary | DB-Wax | 1998. | Schirack, Drake, et al., 2006 | 30. m/0.25 mm/0.25 μm, 40. C @ 3. min, 8. K/min, 200. C @ 20. min |
Capillary | DB-Wax | 2033. | Lee and Noble, 2003 | 30. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 185. C @ 20. min |
Normal alkane RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Stabilwax | 2051. | Chinnici, Guerrero, et al., 2009 | 30. m/0.25 mm/0.25 μm, Helium; Program: 35 0C 3 0C/min -> 100 0C 5 0C/min -> 240 0C (10 min) |
Capillary | DB-FFAP | 2034. | Mebazaa, Mahmoudi, et al., 2009 | 30. m/0.25 mm/0.25 μm, Helium; Program: 50 0C 2 0C/min -> 100 0C (5 min) 5 0C/min -> 250 0C |
Capillary | DB-FFAP | 2033. | Mebazaa, Mahmoudi, et al., 2009 | 30. m/0.25 mm/0.25 μm, Helium; Program: not specified |
Capillary | DB-Wax Etr | 2077. | Loskos, Hernandez-Orte, et al., 2007 | 60. m/0.25 mm/0.5 μm, He; Program: 40C(3min) => 10C/min => 90C => 2C/min => 230C (37min) |
Capillary | DB-Wax | 2008. | Krings, Zelena, et al., 2006 | 30. m/0.32 mm/0.25 μm, He; Program: 45C(5min) => 5C/min => 150C => 10C/min => 240C (10min) |
Capillary | DB-Wax | 2006. | Krings, Zelena, et al., 2006 | 30. m/0.32 mm/0.25 μm, He; Program: 45C(5min) => 5C/min => 150C => 10C/min => 240C (10min) |
References
Go To: Top, Phase change data, IR Spectrum, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Aldrich Chemical Company Inc., 1990
Aldrich Chemical Company Inc.,
Catalog Handbook of Fine Chemicals, Aldrich Chemical Company, Inc., Milwaukee WI, 1990, 1. [all data]
Boido, Lloret, et al., 2003
Boido, E.; Lloret, A.; Medina, K.; Fariña, L.; Carrau, f.; Versini, G.; Dellacassa, E.,
Aroma composition of Vitis vinifera Cv. Tannat: the typical red wine from Uruguay,
J. Agric. Food Chem., 2003, 51, 18, 5408-5413, https://doi.org/10.1021/jf030087i
. [all data]
Prososki, Etzel, et al., 2007
Prososki, R.A.; Etzel, M.R.; Rankin, S.A.,
Solvent type affects the number, distribution, and relative quantities of volatile compounds found in sweet whey powder,
J. Dairy Sci., 2007, 90, 2, 523-531, https://doi.org/10.3168/jds.S0022-0302(07)71535-7
. [all data]
Ibarz, Ferreira, et al., 2006
Ibarz, M.J.; Ferreira, V.; Hernández-Orte, P.; Loscos, N.; Cacho, J.,
Optimization and evaluation of a procedure for the gas chromatographic-mass spectrometric analysis of the aromas generated by fast acid hydrolysis of flavor precursors extracted from grapes,
J. Chromatogr. A, 2006, 1116, 1-2, 217-229, https://doi.org/10.1016/j.chroma.2006.03.020
. [all data]
Schirack, Drake, et al., 2006
Schirack, A.V.; Drake, M.A.; Sander, T.H.; Sandeep, K.P.,
Characterization of aroma-active compounds in microwave blanched peanuts,
J. Food Sci., 2006, 71, 9, c513-c520, https://doi.org/10.1111/j.1750-3841.2006.00173.x
. [all data]
Lee and Noble, 2003
Lee, S.-J.; Noble, A.C.,
Characterization of odor-active compounds in Californian Chardonnay wines using GC-olfactometry and GC-mass spectrometry,
J. Agric. Food Chem., 2003, 51, 27, 8036-8044, https://doi.org/10.1021/jf034747v
. [all data]
Chinnici, Guerrero, et al., 2009
Chinnici, F.; Guerrero, E.D.; Sonni, F.; Natali, N.; Marin, R.N.; Riponi, C.,
Gas chromatography - mass spectrometry (GC-MS) characterization of volatile compounds in quality vinegars with protected Europian geographical indication,
J. Agric. Food Chem., 2009, 57, 11, 4784-4792, https://doi.org/10.1021/jf804005w
. [all data]
Mebazaa, Mahmoudi, et al., 2009
Mebazaa, R.; Mahmoudi, A.; Fouchet, M.; Dos Santos, M.; Kamissoko, F.; Nafti, A.; Ben Cheikh, R.; Rega, B.; Camel, V.,
Characterization of volatile compounds in Tunisian fenugreek seeds,
Food Chem., 2009, 115, 4, 1326-1336, https://doi.org/10.1016/j.foodchem.2009.01.066
. [all data]
Loskos, Hernandez-Orte, et al., 2007
Loskos, N.; Hernandez-Orte, P.; Cacho, J.; Ferreira, V.,
Release and formation of varietal aroma compounds during alcoholic fermentation from nonfloral grape odorless flavor precursors fractions,
J. Agric. Food Chem., 2007, 55, 16, 6674-6684, https://doi.org/10.1021/jf0702343
. [all data]
Krings, Zelena, et al., 2006
Krings, U.; Zelena, K.; Wu, S.; Berger, R.G.,
Thin-layer high-vacuum distillation to isolate volatile flavour compounds of cocoa powder,
Eur. Food Res. Technol., 2006, 223, 5, 675-681, https://doi.org/10.1007/s00217-006-0252-x
. [all data]
Notes
Go To: Top, Phase change data, IR Spectrum, Gas Chromatography, References
- Symbols used in this document:
Tboil Boiling point - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.