Stannane, tetramethyl-
- Formula: C4H12Sn
- Molecular weight: 178.848
- IUPAC Standard InChIKey: VXKWYPOMXBVZSJ-UHFFFAOYSA-N
- CAS Registry Number: 594-27-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Tetramethyltin; Tetramethylstannane; (CH3)4Sn; Tetramethylcin; Tin, tetramethyl-
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: José A. Martinho Simões
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -5. ± 20. | kcal/mol | AVG | N/A | Average of 7 values; Individual data points |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
MS - José A. Martinho Simões
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -12. ± 20. | kcal/mol | AVG | N/A | Average of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -910. ± 20. | kcal/mol | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 74.28 | cal/mol*K | N/A | Sheiman, Rabinovich, et al., 1989 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
47.30 | 298.15 | Sheiman, Rabinovich, et al., 1989 | T = 5 to 313 K.; DH |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
MS - José A. Martinho Simões
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 351. | K | N/A | PCR Inc., 1990 | BS |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 218.18 | K | N/A | Staveley, Warren, et al., 1954 | Uncertainty assigned by TRC = 0.05 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 218.05 | K | N/A | Sheiman, Rabinovich, et al., 1989, 2 | Uncertainty assigned by TRC = 0.02 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 521.81 | K | N/A | Bendtsen, 1977 | Uncertainty assigned by TRC = 0.02 K; Visual, observed with periscope in heated metal block, PRT, IPTS-68, PP.; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 29.423 | atm | N/A | Bendtsen, 1977 | Uncertainty assigned by TRC = 0.005 atm; Visual, observed with periscope in heated metal block, PRT,; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 7.6 ± 0.2 | kcal/mol | CC-SB | Abraham and Irving, 1980 | Anoher value for the enthalpy of vaporization has been reported: 7.91 ± 0.31 kcal/mol Bullard and Haussmann, 1930.; MS |
ΔvapH° | 7.43 ± 0.02 | kcal/mol | C | Abraham and Irving, 1980, 2 | AC |
ΔvapH° | 7.84 ± 0.02 | kcal/mol | N/A | Valerga, 1970 | AC |
ΔvapH° | 7.29 | kcal/mol | N/A | Thompson and Linnett, 1936 | AC |
ΔvapH° | 7.91 | kcal/mol | I | Bullard and Haussmann, 1929 | AC |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
7.79 ± 0.05 | 311. | N/A | Baev, 2001 | Based on data from 273. to 350. K.; AC |
7.48 | 313. to 393. | GC | Hawker, 1992 | AC |
7.98 | 290. | I | Bullard and Haussmann, 1929 | Based on data from 273. to 308. K.; AC |
7.55 | 331. | I | Bullard and Haussmann, 1929 | Based on data from 308. to 355. K.; AC |
7.55 | 303. | N/A | Tanaka and Nagai, 1929 | Based on data from 298. to 308. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
221.9 to 351. | 4.09322 | 1286.161 | -37.304 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
2.207 | 218.05 | N/A | Sheiman, Rabinovich, et al., 1989 | DH |
2.256 | 218.18 | N/A | Staveley, Warren, et al., 1954, 2 | DH |
2.21 | 218.2 | DSC | Sheiman, Rabinovich, et al., 1989, 2 | See also Utschick, Bachmann, et al., 1974.; AC |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
10.12 | 218.05 | Sheiman, Rabinovich, et al., 1989 | DH |
10.34 | 218.18 | Staveley, Warren, et al., 1954, 2 | DH |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: José A. Martinho Simões
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: C4H12Sn (g) = C3H9Sn (g) + CH4 (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 71.0 ± 4.0 | kcal/mol | N/A | McMillen and Golden, 1982 | |
ΔrH° | 69. ± 2. | kcal/mol | VLPP | Baldwin, Lewis, et al., 1979 | Please also see Smith and Patrick, 1983. |
(l) + (g) = C3H9BrSn (l) + (g)
By formula: C4H12Sn (l) + Br2 (g) = C3H9BrSn (l) + CH3Br (g)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -48.30 ± 0.69 | kcal/mol | RSC | Pedley, Skinner, et al., 1957 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970. |
By formula: 3C4H12Sn (l) + Cl4Sn (l) = 4C3H9ClSn (l)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -43.9 ± 6.6 | kcal/mol | RSC | Nash, Skinner, et al., 1965 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970. |
By formula: C4H12Sn (l) + 3Cl4Sn (l) = 4CH3Cl3Sn (l)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -44.5 ± 6.6 | kcal/mol | RSC | Nash, Skinner, et al., 1965 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970. |
By formula: C4H12Sn (l) + Cl4Sn (l) = 2C2H6Cl2Sn (l)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -23.2 ± 3.5 | kcal/mol | RSC | Nash, Skinner, et al., 1965 | Please also see Pedley and Rylance, 1977 and Cox and Pilcher, 1970. |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compiled by: Coblentz Society, Inc.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW-1476 |
NIST MS number | 233848 |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Sheiman, Rabinovich, et al., 1989
Sheiman, M.S.; Rabinovich, I.B.; Nistratov, V.P.; Kamelova, G.P.; Karataev, E.N.; Feshchenko, I.A.,
Specific heat and thermodynamic characteristics of tetramethylstanane,
Zhur. Fiz. Khim., 1989, 63, 836-838. [all data]
PCR Inc., 1990
PCR Inc.,
Research Chemicals Catalog 1990-1991, PCR Inc., Gainesville, FL, 1990, 1. [all data]
Staveley, Warren, et al., 1954
Staveley, L.A.K.; Warren, J.B.; Paget, H.P.; Dowrick, D.J.,
Some Thermodynamic Properties of Compounds of the Formula MX4 II. Tetraalkyl Compounds,
J. Chem. Soc., 1954, 1954, 1992. [all data]
Sheiman, Rabinovich, et al., 1989, 2
Sheiman, M.S.; Rabinovich, I.B.; Nistratov, V.P.; Kamelova, G.P.; Karataev, E.N.; Feshchenko, I.A.,
Heat capacity and thermodynamic characteristics of tetramethylstannane,
Zh. Fiz. Khim., 1989, 63, 3, 836. [all data]
Bendtsen, 1977
Bendtsen, J.,
J. Raman Spectrosc., 1977, 6, 306. [all data]
Abraham and Irving, 1980
Abraham, M.H.; Irving, R.J.,
J. Chem. Thermodyn., 1980, 12, 539. [all data]
Bullard and Haussmann, 1930
Bullard, R.H.; Haussmann, A.C.,
J. Phys. Chem., 1930, 34, 743. [all data]
Abraham and Irving, 1980, 2
Abraham, M.H.; Irving, R.J.,
Enthalpies of vaporization of tetramethyltin, tetraethyltin, tetra-n-propyltin, and tetraethyl-lead, and a survey of the Group IV tetramethyl and tetraethyl compounds,
The Journal of Chemical Thermodynamics, 1980, 12, 6, 539-544, https://doi.org/10.1016/0021-9614(80)90183-4
. [all data]
Valerga, 1970
Valerga, A.J.,
Entropy and related thermodynamic properties of tetramethylgermane,
Diss. Abstr. Int., B, 1970, 31, 6, 3316. [all data]
Thompson and Linnett, 1936
Thompson, H.W.; Linnett, J.W.,
The vapour pressures and association of some metallic and non-metallic alkyls,
Trans. Faraday Soc., 1936, 32, 681, https://doi.org/10.1039/tf9363200681
. [all data]
Bullard and Haussmann, 1929
Bullard, R.H.; Haussmann, A.C.,
The Vapor Pressure of Some Stannanes,
J. Phys. Chem., 1929, 34, 4, 743-747, https://doi.org/10.1021/j150310a006
. [all data]
Baev, 2001
Baev, A.K.,
Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2001, 44, 1, 3. [all data]
Hawker, 1992
Hawker, Darryl,
Equilibrium vapour pressures of tetraorganostannanes,
Chemosphere, 1992, 25, 4, 427-436, https://doi.org/10.1016/0045-6535(92)90276-W
. [all data]
Tanaka and Nagai, 1929
Tanaka, Y.; Nagai, Y.,
Proc. Imp. Acad. (Tokyo), 1929, 5, 78. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Staveley, Warren, et al., 1954, 2
Staveley, L.A.K.; Warren, J.B.; Paget, H.P.; Dowrick, D.J.,
Some thermodynamic properties of compounds of the formula MX4. Part II. Tetra-alkyl compounds, 1954, J. [all data]
Utschick, Bachmann, et al., 1974
Utschick, H.; Bachmann, G.; Kapitza, H.,
Chem. Tech. (Leipzig), 1974, 26, 423. [all data]
McMillen and Golden, 1982
McMillen, D.F.; Golden, D.M.,
Hydrocarbon bond dissociation energies,
Ann. Rev. Phys. Chem., 1982, 33, 493. [all data]
Baldwin, Lewis, et al., 1979
Baldwin, A.C.; Lewis, K.E.; Golden, D.M.,
Int. J. Chem. Kinet., 1979, 11, 529. [all data]
Smith and Patrick, 1983
Smith, G.P.; Patrick, R.,
Int. J. Chem. Kinet., 1983, 15, 167. [all data]
Pedley, Skinner, et al., 1957
Pedley, J.B.; Skinner, H.A.; Chernick, C.L.,
Thermochemistry of metallic alkyls. Part 8.?Tin tetramethyl, and hexamethyl distannane,
Trans. Faraday Soc., 1957, 53, 1612, https://doi.org/10.1039/tf9575301612
. [all data]
Pedley and Rylance, 1977
Pedley, J.B.; Rylance, J.,
Computer Analysed Thermochemical Data: Organic and Organometallic Compounds, University of Sussex, Brigton, 1977. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds
in Academic Press, New York, 1970. [all data]
Nash, Skinner, et al., 1965
Nash, G.A.; Skinner, H.A.; Stack, W.F.,
Trans. Faraday Soc., 1965, 61, 640. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.