Borane, trimethyl-
- Formula: C3H9B
- Molecular weight: 55.915
- IUPAC Standard InChIKey: WXRGABKACDFXMG-UHFFFAOYSA-N
- CAS Registry Number: 593-90-8
- Chemical structure:
This structure is also available as a 2d Mol file - Other names: Trimethylborane; Trimethylboron; (CH3)3B
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: F- + C3H9B = (F- • C3H9B)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 244.8 | kJ/mol | IMRB | Murphy and Beauchamp, 1977 | gas phase; MeSiF3>Me3B>SF4; B |
ΔrH° | 197. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | Larson and McMahon, 1985 | gas phase; switching reaction,Thermochemical ladder(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 166. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1985 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
C3H8B- + =
By formula: C3H8B- + H+ = C3H9B
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1532. ± 26. | kJ/mol | G+TS | Murphy and Beauchamp, 1976 | gas phase; Between AsH3,PH3; value altered from reference due to change in acidity scale; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1502. ± 25. | kJ/mol | IMRB | Murphy and Beauchamp, 1976 | gas phase; Between AsH3,PH3; value altered from reference due to change in acidity scale; B |
References
Go To: Top, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Murphy and Beauchamp, 1977
Murphy, M.K.; Beauchamp, J.L.,
Fluorine and Alkyl Substituent Effects on Gas-Phase Lewis Acidities of Boranes by ICR Spectroscopy,
Inorg. Chem., 1977, 16, 2437. [all data]
Larson and McMahon, 1985
Larson, J.W.; McMahon, T.B.,
Fluoride and chloride affinities of the main group oxides, fluorides, oxofluorides, and alkyls. Quantitative scales of lewis acidities from ICR halide exchange equilibria,
J. Am. Chem. Soc., 1985, 107, 766. [all data]
Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R.,
Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study,
J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034
. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
Murphy and Beauchamp, 1976
Murphy, M.K.; Beauchamp, J.L.,
Acid-base properties and gas-phase ion chemistry of (CH3)3B,
J. Am. Chem. Soc., 1976, 98, 1433. [all data]
Notes
Go To: Top, Reaction thermochemistry data, References
- Symbols used in this document:
ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.