Formic acid, butyl ester
- Formula: C5H10O2
- Molecular weight: 102.1317
- IUPAC Standard InChIKey: NMJJFJNHVMGPGM-UHFFFAOYSA-N
- CAS Registry Number: 592-84-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: n-Butyl formate; Butyl formate; HCOO(CH2)3CH3; n-Butyl methanoate; Butyl methanoate; Butylester kyseliny mravenci; UN 1128
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference |
---|---|---|
200.25 | 298.15 | Jimenez, Romani, et al., 1986 |
Phase change data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 379.7 ± 0.7 | K | AVG | N/A | Average of 11 out of 12 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 183.15 | K | N/A | Timmermans, 1927 | Uncertainty assigned by TRC = 1.5 K; TRC |
Tfus | 183.2 | K | N/A | Timmermans, 1922 | Uncertainty assigned by TRC = 0.4 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 565.2 | K | N/A | Majer and Svoboda, 1985 | |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 41.16 | kJ/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 40.1 | kJ/mol | EB | Chylinski, Fras, et al., 2004 | Based on data from 313. to 359. K.; AC |
ΔvapH° | 41.3 ± 0.1 | kJ/mol | C | Svoboda, Uchytilová, et al., 1980 | AC |
ΔvapH° | 37.1 ± 0.04 | kJ/mol | V | Mathews, 1926 | ALS |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
36.58 | 379.3 | N/A | Majer and Svoboda, 1985 | |
37.9 | 310. | A | Stephenson and Malanowski, 1987 | Based on data from 295. to 380. K.; AC |
40.1 ± 0.1 | 313. | C | Svoboda, Uchytilová, et al., 1980 | AC |
39.0 ± 0.1 | 328. | C | Svoboda, Uchytilová, et al., 1980 | AC |
38.7 ± 0.1 | 346. | C | Cihlár, Hynek, et al., 1976 | AC |
38.1 ± 0.1 | 355. | C | Cihlár, Hynek, et al., 1976 | AC |
37.3 ± 0.1 | 363. | C | Cihlár, Hynek, et al., 1976 | AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kJ/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
298. to 363. | 55.22 | 0.231 | 565.2 | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
302.3 to 385.6 | 4.22772 | 1347.33 | -59.956 | Nelson, 1928 | Coefficents calculated by NIST from author's data. |
Reaction thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: CH6N+ + C5H10O2 = (CH6N+ • C5H10O2)
Bond type: Hydrogen bonds of the type NH+-O between organics
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 103. | kJ/mol | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 110. | J/mol*K | N/A | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated |
Free energy of reaction
ΔrG° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
52.3 | 461. | PHPMS | Meot-Ner, 1984 | gas phase; Entropy change calculated or estimated |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Jimenez, Romani, et al., 1986
Jimenez, E.; Romani, L.; Paz Andrade, M.I.; Roux-Desgranges, G.; Grolier, J.-P.E.,
Molar excess heat capacities and volumes for mixtures of alkanoates with cyclohexane at 25°C,
J. Solution Chem., 1986, 15(11), 879-890. [all data]
Timmermans, 1927
Timmermans, J.,
The Melting Point of Organic Substances,
Bull. Soc. Chim. Belg., 1927, 36, 502. [all data]
Timmermans, 1922
Timmermans, J.,
Investigation of the Freezing Point of Organic Substances VII,
Bull. Soc. Chim. Belg., 1922, 31, 389. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Chylinski, Fras, et al., 2004
Chylinski, Krzysztof; Fras, Zbigniew; Malanowski, Stanislaw K.,
Vapor-Liquid Equilibrium for Phenol + α-Methyl Benzyl Alcohol and 2-Ethoxyethanol + n -Butyl Formate «8224»,
J. Chem. Eng. Data, 2004, 49, 1, 2-6, https://doi.org/10.1021/je025566c
. [all data]
Svoboda, Uchytilová, et al., 1980
Svoboda, Václav; Uchytilová, Vera; Majer, Vladimír; Pick, Jirí,
Heats of vaporization of alkyl esters of formic, acetic and propionic acids,
Collect. Czech. Chem. Commun., 1980, 45, 12, 3233-3240, https://doi.org/10.1135/cccc19803233
. [all data]
Mathews, 1926
Mathews, J.H.,
The accurate measurement of heats of vaporization of liquids,
J. Am. Chem. Soc., 1926, 48, 562-576. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Cihlár, Hynek, et al., 1976
Cihlár, J.; Hynek, V.; Svoboda, V.; Holub, R.,
Heats of vaporization of alkyl esters of formic acid,
Collect. Czech. Chem. Commun., 1976, 41, 1, 1-6, https://doi.org/10.1135/cccc19760001
. [all data]
Nelson, 1928
Nelson, O.A.,
Vapor Pressures of Fumigants: II---Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, Secondary Butyl and Isobutyl Formates 1,
Ind. Eng. Chem., 1928, 20, 12, 1382-1384, https://doi.org/10.1021/ie50228a035
. [all data]
Meot-Ner, 1984
Meot-Ner, (Mautner)M.,
The Ionic Hydrogen Bond and Ion Solvation. 1. -NH+ O-, -NH+ N- and -OH+ O- Bonds. Correlations with Proton Affinity. Deviations Due to Structural Effects,
J. Am. Chem. Soc., 1984, 106, 5, 1257, https://doi.org/10.1021/ja00317a015
. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid T Temperature Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.