Benzene, iodo-
- Formula: C6H5I
- Molecular weight: 204.0084
- IUPAC Standard InChIKey: SNHMUERNLJLMHN-UHFFFAOYSA-N
- CAS Registry Number: 591-50-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Benzene iodide; Iodobenzene; Phenyl iodide
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Phase change data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 461.4 ± 0.6 | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 242.15 | K | N/A | Mallikarjun and Hill, 1965 | Uncertainty assigned by TRC = 1. K; TRC |
Tfus | 241.9 | K | N/A | Dreisbach, 1955 | Uncertainty assigned by TRC = 0.02 K; TRC |
Tfus | 241.8 | K | N/A | Timmermans, 1952 | Uncertainty assigned by TRC = 0.3 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 241.8 | K | N/A | Stull, 1937 | Uncertainty assigned by TRC = 0.25 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 47.4 | kJ/mol | CGC | Chickos, Hosseini, et al., 1995 | Based on data from 313. to 353. K.; AC |
ΔvapH° | 48.9 | kJ/mol | N/A | Boublik, Fried, et al., 1984 | Based on data from 320. to 460. K. See also Basarová and Svoboda, 1991.; AC |
ΔvapH° | 47.7 ± 4.2 | kJ/mol | V | Smith, 1956 | Heat of formation derived by Cox and Pilcher, 1970; ALS |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
41.1 | 477. | A | Stephenson and Malanowski, 1987 | Based on data from 462. to 679. K.; AC |
51.4 | 288. | A | Stephenson and Malanowski, 1987 | Based on data from 273. to 358. K. See also Dykyj, 1972.; AC |
46.0 | 373. | A | Stephenson and Malanowski, 1987 | Based on data from 358. to 543. K. See also Dykyj, 1972.; AC |
43.1 | 243. to 255. | N/A | Jones, 1960 | AC |
40.0 | 275. | ME | Zibberman-Granovskaya, 1940 | Based on data from 248. to 303. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
302.4 to 461.4 | 4.3712 | 1803.466 | -47.933 | Young, 1889 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
9.75 | 241.8 | Domalski and Hearing, 1996 | AC |
9.749 | 241.83 | Stull, 1937, 2 | DH |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
40.31 | 241.83 | Stull, 1937, 2 | DH |
References
Go To: Top, Phase change data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Mallikarjun and Hill, 1965
Mallikarjun, S.; Hill, N.E.,
Temperature dependence of viscosity and dielectric relaxation time in simple polar liquids,
Trans. Faraday Soc., 1965, 61, 1389. [all data]
Dreisbach, 1955
Dreisbach, R.R.,
Physical Properties of Chemical Compounds, Advances in Chemistry Series No. 15, Am. Chem. Soc.: Washington, D. C., 1955. [all data]
Timmermans, 1952
Timmermans, J.,
Freezing points of organic compounds. VVI New determinations.,
Bull. Soc. Chim. Belg., 1952, 61, 393. [all data]
Stull, 1937
Stull, D.R.,
A Semi-micro Calorimeter for Measuring Heat Capacities at Low Temp.,
J. Am. Chem. Soc., 1937, 59, 2726. [all data]
Chickos, Hosseini, et al., 1995
Chickos, James S.; Hosseini, Sarah; Hesse, Donald G.,
Determination of vaporization enthalpies of simple organic molecules by correlations of changes in gas chromatographic net retention times,
Thermochimica Acta, 1995, 249, 41-62, https://doi.org/10.1016/0040-6031(95)90670-3
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Basarová and Svoboda, 1991
Basarová, Pavlína; Svoboda, Václav,
Calculation of heats of vaporization of halogenated hydrocarbons from saturated vapour pressure data,
Fluid Phase Equilibria, 1991, 68, 13-34, https://doi.org/10.1016/0378-3812(91)85008-I
. [all data]
Smith, 1956
Smith, L.,
Corrected heats of combustion of organic iodine compounds,
Acta Chem. Scand., 1956, 10, 884-886. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Dykyj, 1972
Dykyj, J.,
Petrochemia, 1972, 12, 1, 13. [all data]
Jones, 1960
Jones, A.H.,
Sublimation Pressure Data for Organic Compounds.,
J. Chem. Eng. Data, 1960, 5, 2, 196-200, https://doi.org/10.1021/je60006a019
. [all data]
Zibberman-Granovskaya, 1940
Zibberman-Granovskaya, A.A.,
Russ. J. Phys. Chem., 1940, 14, 759. [all data]
Young, 1889
Young, S.,
On the Vapour-Pressures and Specific Volumes of Similar Compounds of Elements in Relation to the Position of those Elements in the Periodic Table,
J. Chem. Soc., 1889, 55, 486-521, https://doi.org/10.1039/ct8895500486
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Stull, 1937, 2
Stull, D.R.,
A semi-micro calorimeter for measuring heat capacities at low temperatures,
J. Am. Chem. Soc., 1937, 59, 2726-2733. [all data]
Notes
Go To: Top, Phase change data, References
- Symbols used in this document:
Tboil Boiling point Tfus Fusion (melting) point Ttriple Triple point temperature ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.