Pyrazine, 2,3-dimethyl-


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas126.0kJ/molCcbRibeiro da Silva, Morais, et al., 1996 

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfliquid73.4 ± 2.0kJ/molCcbRibeiro da Silva, Morais, et al., 1996 
Quantity Value Units Method Reference Comment
Δcliquid-3577.8 ± 1.7kJ/molCcbRibeiro da Silva, Morais, et al., 1996 

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Tboil429.2KN/AWeast and Grasselli, 1989BS
Quantity Value Units Method Reference Comment
Δvap52.6 ± 1.7kJ/molCMorais, Miranda, et al., 2003AC
Δvap52.6kJ/molERibeiro da Silva, Morais, et al., 1996ALS
Δvap52.6kJ/molN/ARibeiro da Silva, Morais, et al., 1996DRB

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center
State gas
Instrument HP-GC/MS/IRD

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center, 1990.
NIST MS number 118520

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillarySE-30110.941.Samusenko and Golovnya, 198825. m/0.32 mm/1. μm, He
CapillarySE-3080.936.Samusenko and Golovnya, 198825. m/0.32 mm/1. μm, He
CapillaryOV-101110.941.Golovnya, Samusenko, et al., 1987He; Column length: 50. m; Column diameter: 0.25 mm
CapillaryOV-10180.936.Golovnya, Samusenko, et al., 1987He; Column length: 50. m; Column diameter: 0.25 mm

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-1890.Takeoka, Perrino, et al., 199660. m/0.25 mm/0.25 μm, 30. C @ 4. min, 2. K/min; Tend: 220. C
CapillaryDB-1890.Takeoka, Perrino, et al., 199660. m/0.25 mm/0.25 μm, 30. C @ 4. min, 2. K/min; Tend: 220. C
CapillaryOV-101901.Shibamoto, Kamiya, et al., 1981N2, 1. K/min; Column length: 80. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C
CapillaryOV-101908.Shibamoto, Kamiya, et al., 1981N2, 1. K/min; Column length: 80. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C

Kovats' RI, polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryPEG-40M110.1344.Golovnya, Samusenko, et al., 1987He; Column length: 50. m; Column diameter: 0.3 mm
CapillaryPEG-40M80.1330.Golovnya, Samusenko, et al., 1987He; Column length: 50. m; Column diameter: 0.3 mm

Kovats' RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1335.Yeo and Shibamoto, 1991He, 60. C @ 4. min, 4. K/min, 180. C @ 30. min; Column length: 60. m; Column diameter: 0.25 mm
CapillaryCarbowax 20M1334.Shibamoto, Kamiya, et al., 1981N2, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M1338.Shibamoto, Kamiya, et al., 1981N2, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tstart: 80. C; Tend: 200. C

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryCP Sil 8 CB897.Mahadevan and Farmer, 200660. C @ 5. min, 4. K/min, 220. C @ 30. min; Column length: 50. m; Column diameter: 0.32 mm
CapillaryBPX-5939.Bredie, Mottram, et al., 200250. m/0.32 mm/0.5 μm, 60. C @ 5. min, 4. K/min, 250. C @ 20. min
CapillaryBPX-5931.Ames, Guy, et al., 200150. m/0.32 mm/0.5 μm, He, 60. C @ 5. min, 4. K/min, 250. C @ 10. min
CapillaryBPX-5932.Ames, Guy, et al., 2001, 250. m/0.32 mm/0.25 μm, He, 60. C @ 5. min, 4. K/min, 250. C @ 10. min
CapillaryBPX-5940.Ames, Guy, et al., 2001, 250. m/0.32 mm/0.25 μm, He, 60. C @ 5. min, 4. K/min, 250. C @ 10. min
CapillaryDB-1892.Kim, 200160. m/0.32 mm/1. μm, He, 40. C @ 5. min, 2. K/min; Tend: 220. C
CapillaryBP-5919.Whitfield and Mottram, 20014. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tstart: 60. C; Tend: 250. C
CapillaryDB-5927.Moio, Piombino, et al., 200030. m/0.32 mm/1. μm, H2, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryDB-1899.Wu, Wang, et al., 200060. m/0.25 mm/1. μm, N2, 5. K/min, 200. C @ 30. min; Tstart: 30. C
CapillaryBPX-5929.Hill, Isaacs, et al., 199950. m/0.325 mm/0.5 μm, He, 20. C @ 2. min, 4. K/min, 250. C @ 10. min
CapillaryBPX-5930.Hill, Isaacs, et al., 199950. m/0.325 mm/0.5 μm, He, 20. C @ 2. min, 4. K/min, 250. C @ 10. min
CapillaryDB-5927.Moio and Addeo, 199830. m/0.32 mm/1. μm, H2, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryDB-5927.Moio and Addeo, 199830. m/0.32 mm/1. μm, H2, 3. K/min; Tstart: 40. C; Tend: 210. C
CapillaryBPX-5932.Ames, Defaye, et al., 199750. m/0.325 mm/0.5 μm, He, 50. C @ 2. min, 4. K/min, 250. C @ 10. min
CapillaryDB-1889.DeMilo, Lee, et al., 199630. m/0.248 mm/0.25 μm, He, 50. C @ 5. min, 5. K/min; Tend: 250. C
CapillaryDB-1891.DeMilo, Lee, et al., 199630. m/0.248 mm/0.25 μm, He, 50. C @ 5. min, 5. K/min; Tend: 250. C
CapillaryDB-1891.DeMilo, Lee, et al., 199630. m/0.248 mm/0.25 μm, He, 50. C @ 5. min, 5. K/min; Tend: 250. C
CapillarySPB-1892.Lee, DeMilo, et al., 199530. m/0.25 mm/0.25 μm, He, 50. C @ 5. min, 5. K/min; Tend: 250. C
CapillaryHP-1900.Oh, Hartman, et al., 199250. m/0.32 mm/1.05 μm, He, 2. K/min, 260. C @ 10. min; Tstart: 40. C
CapillaryHP-1897.Zhang, Dorjpalam, et al., 199250. m/0.32 mm/1.5 μm, 2. K/min, 220. C @ 30. min; Tstart: 40. C
CapillaryOV-101900.Golovnya, Samusenko, et al., 1991He, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 100. C
CapillaryOV-101898.Golovnya, Samusenko, et al., 1991He, 8. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 70. C
CapillaryOV-101897.2Golovnya, Samusenko, et al., 1991He, 4. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 80. C
CapillaryDB-1891.Izzo and Ho, 199150. m/0.32 mm/1.05 μm, He, 2. K/min, 260. C @ 40. min; Tstart: 40. C
CapillarySE-30896.Misharina, Golovnya, et al., 199150. m/0.32 mm/0.25 μm, 4. K/min; Tstart: 50. C; Tend: 240. C
CapillaryDB-1896.Zhang and Ho, 199160. m/0.25 mm/0.25 μm, He, 2. K/min, 220. C @ 10. min; Tstart: 40. C

Van Den Dool and Kratz RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryZB-5930.Lu, Hao, et al., 200530. m/0.25 mm/0.25 μm, He; Program: 50C(1min) => 3C/min => 209C => 20C/min => 280C
CapillaryCP Sil 8 CB930.Martin and Ames, 200160. m/0.25 mm/0.25 μm, He; Program: 40C(2min) => 4C/min => 200C => 10C/min => 250C(15min)
CapillaryCP-Sil8930.Martin and Ames, 2001, 260. m/0.25 mm/0.25 μm, He; Program: 40C(2min) => 4C/min => 200C => 10C/min => 250C (15min)
CapillaryDB-5MS918.Boulanger and Crouzet, 200030. m/0.25 mm/0.25 μm, He; Program: 60 0C (3 min) 2 K/min -> 220 0C 5 K/min -> 250 0C (15 min)
CapillaryCP-Sil 8CB-MS925.Elmore, Mottram, et al., 200060. m/0.25 mm/0.25 μm, He; Program: 0C(5min) => 40C/min => 40C (2min) => 4C/min => 280C
CapillaryDB-5932.Parker, Hassell, et al., 200050. m/0.32 mm/0.5 μm, He; Program: oC(5min) => 60C/min => 60C (5min) => 4C/min => 250C
CapillaryBPX-5937.Elmore, Mottram, et al., 199950. m/0.32 mm/0.5 μm, He; Program: 0C(5min) => 40C/min => 40C(2min) => 4C/min => 280C
CapillaryBPX-5932.Bredie, Mottram, et al., 199850. m/0.32 mm/0.5 μm, He; Program: OC (5min) => 60C/min => 60C(5min) => 4C/min => 250C
CapillaryBPX-5934.Owens J.D., Allagheny N., et al., 199750. m/0.32 mm/0.5 μm, He; Program: OC => 60C/min => 60C(5min) => 4C/min => 250C(20min)
CapillaryDB-5915.Beal and Mottram, 199430. m/0.32 mm/1.0 μm, He; Program: 5 0C (0.5 min) -> (1 min) 60 0C (5 min) 4 0C/min -> 250 0C
CapillaryDB-1896.Kuo, Zhang, et al., 198960. m/0.32 mm/0.25 μm, He; Program: -40C => 40C/min => 40C => 2C/min => 260C
CapillaryDB-1896.Kuo, Zhang, et al., 198960. m/0.32 mm/0.25 μm, He; Program: -40C => 40C/min => 40C => 2C/min => 260C

Van Den Dool and Kratz RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-Wax1346.Pozo-Bayon M.A., Ruiz-Rodriguez A., et al., 200730. m/0.25 mm/0.5 μm, He, 40. C @ 5. min, 4. K/min, 250. C @ 15. min
CapillaryDB-Wax1357.Lopez-Galilea I., Fournier N., et al., 200630. m/0.32 mm/0.5 μm, He, 5. K/min, 240. C @ 10. min; Tstart: 40. C
CapillaryCP-Wax 52CB1331.Mahadevan and Farmer, 200660. C @ 5. min, 4. K/min, 220. C @ 30. min; Column length: 50. m; Column diameter: 0.32 mm
CapillaryOV-3511318.Bonvehí, 200550. m/0.32 mm/0.2 μm, He, 5. K/min; Tstart: 60. C; Tend: 220. C
CapillaryDB-Wax1375.Mahajan, Goddik, et al., 200430. m/0.25 mm/0.5 μm, He, 40. C @ 2. min, 5. K/min, 230. C @ 10. min
CapillarySupelcowax-101346.Chung, Yung, et al., 200260. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillarySupelcowax-101346.Chung, Yung, et al., 200160. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillaryDB-Wax1342.Kim, 200160. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 2. K/min, 200. C @ 30. min
CapillarySupelcowax-101346.Chung, 199960. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillarySupelcowax-101346.Chung, 1999, 260. m/0.25 mm/0.25 μm, He, 35. C @ 5. min, 2. K/min, 195. C @ 90. min
CapillaryPEG-20M1352.Shimoda, Nakada, et al., 199760. m/0.25 mm/0.25 μm, He, 2. K/min, 230. C @ 60. min; Tstart: 50. C
CapillaryDB-Wax1377.Shimoda, Peralta, et al., 199660. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 50. C; Tend: 230. C
CapillaryDB-Wax1352.Shimoda, Shiratsuchi, et al., 199660. m/0.25 mm/0.25 μm, He, 2. K/min, 230. C @ 60. min; Tstart: 50. C
CapillarySupelcowax-101344.Chung and Cadwallader, 199360. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 2. K/min, 195. C @ 40. min
CapillaryCP-Wax 52CB1337.Yu, Wu, et al., 199350. m/0.32 mm/0.25 μm, H2, 40. C @ 10. min, 1.5 K/min, 200. C @ 60. min
CapillarySupelcowax-101348.Tanchotikul and Hsieh, 198960. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min
CapillarySupelcowax-101351.Tanchotikul and Hsieh, 198960. m/0.25 mm/0.25 μm, 40. C @ 5. min, 2. K/min, 175. C @ 20. min
CapillaryCP-WAX 57CB1334.Baltes and Mevissen, 1988He, 50. C @ 5. min, 2. K/min; Column length: 50. m; Column diameter: 0.24 mm; Tend: 210. C
CapillaryCP-WAX 57CB1352.Salter L.J., Mottram D.S., et al., 198860. C @ 5. min, 4. K/min; Column length: 50. m; Column diameter: 0.32 mm; Tend: 200. C
CapillaryCP-WAX 57CB1352.Whitfield, Mottram, et al., 1988He, 60. C @ 5. min, 4. K/min, 200. C @ 10. min; Column length: 50. m; Column diameter: 0.32 mm
CapillaryCP-WAX 57CB1354.Whitfield, Mottram, et al., 1988He, 60. C @ 5. min, 4. K/min, 200. C @ 10. min; Column length: 50. m; Column diameter: 0.32 mm

Van Den Dool and Kratz RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillarySupelcowax-101345.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillarySupelcowax-101344.Bianchi, Careri, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 35C(8min) => 4C/min => 60C => 6C/min => 160C => 20C/min => 200C(1min)
CapillaryDB-Wax1337.Cantergiani, Brevard, et al., 200130. m/0.25 mm/0.25 μm; Program: 20C(30s) => fast => 60C => 4C/min => 220C (20min)
CapillaryDB-Wax1326.Boulanger and Crouzet, 200030. m/0.25 mm/0.25 μm, H2; Program: 60 0C (3 min) 2 K/min -> 220 0C 5 K/min -> 250 0C (15 min)
CapillarySupelcowax-101341.Baek and Cadwallader, 199660. m/0.25 mm/0.25 μm; Program: 40C => (6C/min) => 80C(6min) => (15C/min) => 200C(10min)
CapillaryBP-201367.Beal and Mottram, 199450. m/0.32 mm/0.5 μm, He; Program: 5 0C (0.5 min) -> (1 min) 60 0C (5 min) 4 0C/min -> 200 0C

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-5 MS911.Miyazawa, Marumoto, et al., 201130. m/0.25 mm/0.25 μm, Helium, 4. K/min, 260. C @ 5. min; Tstart: 40. C
CapillaryHP-5 MS920.Radulovic, Blagojevic, et al., 201030. m/0.25 mm/0.25 μm, Helium, 5. K/min, 290. C @ 10. min; Tstart: 70. C
CapillaryUltra-1892.Du, Clery, et al., 200850. m/0.20 mm/0.33 μm, Helium, 2. K/min, 280. C @ 20. min; Tstart: 50. C
CapillaryHP-5918.Du, Clery, et al., 200850. m/0.20 mm/0.33 μm, Helium, 10. K/min, 280. C @ 8.5 min; Tstart: 50. C
CapillarySLB-5MS902.Risticevic, Carasek, et al., 200810. m/0.18 mm/0.18 μm, Helium, 40. C @ 1.5 min, 10. K/min; Tend: 295. C
CapillaryDB-5930.Fadel, Mageed, et al., 2006He, 60. C @ 5. min, 4. K/min; Column length: 60. m; Column diameter: 0.32 mm; Tend: 250. C
CapillaryDB-5930.Fadel, Mageed, et al., 2006, 2He, 50. C @ 5. min, 4. K/min; Column length: 60. m; Column diameter: 0.32 mm; Tend: 250. C
CapillaryHP-5917.1Leffingwell and Alford, 200560. m/0.32 mm/0.25 μm, He, 30. C @ 2. min, 2. K/min, 260. C @ 28. min
CapillaryMDN-5921.van Loon, Linssen, et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 270. C @ 5. min
CapillaryMDN-5925.van Loon, Linssen, et al., 200560. m/0.25 mm/0.25 μm, He, 40. C @ 4. min, 4. K/min, 270. C @ 5. min
CapillaryDB-5915.Tellez, Khan, et al., 200430. m/0.25 mm/0.25 μm, He, 3. K/min; Tstart: 60. C; Tend: 240. C
CapillaryDB-1902.Chen and Ho, 199960. m/0.32 mm/1. μm, He, 2. K/min; Tstart: 40. C; Tend: 260. C
CapillaryHP-5917.Boylston and Viniyard, 199850. m/0.32 mm/0.52 μm, 35. C @ 15. min, 2. K/min, 250. C @ 45. min
CapillaryDB-1902.Chen and Ho, 199860. m/0.32 mm/1.0 μm, He, 2. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-1900.Chen and Ho, 1998, 260. m/0.32 mm/1.0 μm, He, 3. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-1908.Chen, Wang, et al., 199860. m/0.32 mm/1. μm, He, 3. K/min; Tstart: 40. C; Tend: 260. C
CapillaryDB-1893.Tai and Ho, 199860. m/0.32 mm/1.0 μm, He, 2. K/min; Tstart: 40. C; Tend: 280. C
CapillaryDB-1890.Buttery, Ling, et al., 199730. C @ 25. min, 4. K/min, 200. C @ 20. min; Column length: 60. m; Column diameter: 0.25 mm
CapillaryDB-1899.Lu, Yu, et al., 199760. m/0.32 mm/1. μm, He, 40. C @ 2. min, 2. K/min, 280. C @ 40. min
CapillaryDB-1890.Buttery and Ling, 1995He, 30. C @ 25. min, 4. K/min, 200. C @ 20. min; Column length: 60. m; Column diameter: 0.25 mm
CapillaryDB-1899.Yu and Ho, 199560. m/0.25 mm/1. μm, He, 40. C @ 5. min, 2. K/min, 260. C @ 60. min
CapillaryDB-1898.Yu, Wu, et al., 199460. m/0.25 mm/1.0 μm, He, 40. C @ 5. min, 2. K/min, 260. C @ 60. min
CapillaryDB-1900.Yu, Wu, et al., 1994, 260. m/0.25 mm/1. μm, He, 40. C @ 5. min, 2. K/min, 260. C @ 60. min
CapillaryOV-101900.Egolf and Jurs, 19932. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryOV-101895.Misharina, Golovnya, et al., 1991, 250. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 50. C; Tend: 250. C
CapillaryOV-101895.Misharina, Golovnya, et al., 1991, 250. m/0.32 mm/0.5 μm, He, 4. K/min; Tstart: 50. C; Tend: 250. C
CapillaryDB-1889.Flath, Matsumoto, et al., 198960. m/0.32 mm/0.25 μm, 4. K/min; Tstart: 50. C; Tend: 250. C
CapillaryDB-1892.Flath, Matsumoto, et al., 198960. m/0.32 mm/0.25 μm, 4. K/min; Tstart: 50. C; Tend: 250. C
CapillaryDB-1892.Flath, Matsumoto, et al., 198960. m/0.32 mm/0.25 μm, 4. K/min; Tstart: 50. C; Tend: 250. C
CapillaryDB-1893.Flath, Matsumoto, et al., 198960. m/0.32 mm/0.25 μm, 4. K/min; Tstart: 50. C; Tend: 250. C
CapillaryOV-101897.Mihara and Masuda, 19882. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryOV-101897.Mihara and Masuda, 1987N2, 2. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryOV-1892.Wu, Liou, et al., 1987Hydrogen, 1. K/min, 200. C @ 35. min; Column length: 50. m; Column diameter: 0.20 mm; Tstart: 50. C
CapillaryOV-101897.Mihara and Enomoto, 1985N2, 2. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryOV-101890.del Rosario, de Lumen, et al., 1984He, 0. C @ 1. min, 3. K/min; Column length: 50. m; Column diameter: 0.31 mm; Tend: 225. C
CapillaryMethyl Silicone895.Lorenz, Stern, et al., 19834. K/min, 200. C @ 15. min; Column length: 25. m; Column diameter: 0.2 mm; Tstart: 50. C
CapillaryMethyl Silicone895.Lorenz, Stern, et al., 19834. K/min, 200. C @ 15. min; Column length: 25. m; Column diameter: 0.2 mm; Tstart: 50. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryRTX-5 MS926.Mebazaa, Mahmoudi, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: 50 0C (5 min) 2 0C/min -> 100 0C (5 min) 5 0C/min -> 300 0C
CapillaryRTX-5 MS920.Mebazaa, Mahmoudi, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryCP-Sil 5 Cb906.Collin, Nizet, et al., 200850. m/0.32 mm/1.20 μm, Nitrogen; Program: 40 0C 20 0C/min -> 85 0C 1 0C/min -> 145 0C 3 0C/min -> 250 0C (30 min)
CapillarySLB-5MS916.Risticevic, Carasek, et al., 200810. m/0.18 mm/0.18 μm, Helium; Program: not specified
CapillaryHP-5 MS919.Wan Aida, Ho, et al., 200830. m/0.25 mm/0.25 μm, Helium; Program: 50 0C (2 min) 20 0C/min -> 80 0C (1 min) 20 0C -> 100 0C (1 min) 30 0C/min -> 230 0C (2 min)
CapillaryHP-5922.Characterization of Pyrazines in Some Chinese Liquors and Their Approximate Concentrations, 200730. m/0.25 mm/0.25 μm, He; Program: 50C(2min) => 2C/min => 140C => 10C/min => 280C (10min)
CapillaryHP-5MS919.Ho, Wan Aida, et al., 200730. m/0.25 mm/0.25 μm, He; Program: 50C(2min) => 20C/min => 80C (1min) => 20C/min => 100C(1min) => 30C/min => 230C(3min)
CapillaryCP Sil 5 CB897.Counet, Ouwerx, et al., 200450. m/0.32 mm/1.2 μm; Program: 36C => 20C/min => 85C => 1C/min => 145C => 3C/min => 250C(30min)
CapillarySE-30900.Vinogradov, 2004Program: not specified
CapillaryDB-5892.Qian and Reineccius, 200330. m/0.32 mm/1. μm; Program: 35C(4min) => 2C/min => 130C => 4C/min => 250C
CapillaryCP Sil 5 CB899.Counet, Callemien, et al., 200250. m/0.32 mm/1.2 μm; Program: 36C => 20C/min => 85C => 1C/min => 145C=3C/min => 250C(30min)
CapillaryDB-5911.Didzbalis and Ho, 200160. m/0.25 mm/0.25 μm, Helium; Program: 35 0C (2 min) 30 0C/min -> 60 0C (1 min) 6 0C/min -> 250 0C (10 min)
CapillaryDB-1894.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryDB-1895.Kawai, Ishida, et al., 199160. m/0.25 mm/0.25 μm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.897.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified
CapillaryOV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc.901.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified

Normal alkane RI, polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryHP-Innowax1330.Puvipirom and Chaisei, 201215. m/0.32 mm/0.50 μm, Helium, 3. K/min; Tstart: 40. C; Tend: 250. C
CapillaryFFAP1363.Budryn, Nebesny, et al., 201130. m/0.32 mm/0.50 μm, Nitrogen, 35. C @ 5. min, 4. K/min, 250. C @ 45. min
CapillaryDB-Wax1371.Moon and Shibamoto, 200960. m/0.25 mm/0.50 μm, Helium, 40. C @ 5. min, 2. K/min, 210. C @ 70. min
CapillaryHP-Innowax1332.Du, Clery, et al., 200850. m/0.20 mm/0.33 μm, Helium, 10. K/min, 250. C @ 6. min; Tstart: 50. C
CapillaryZB-Wax1383.Marin, Pozrl, et al., 200860. m/0.32 mm/0.50 μm, Helium, 40. C @ 5. min, 4. K/min, 220. C @ 5. min
CapillaryDB-Wax1342.Characterization of Pyrazines in Some Chinese Liquors and Their Approximate Concentrations, 200730. m/0.25 mm/0.25 μm, He, 4. K/min, 230. C @ 15. min; Tstart: 50. C
CapillaryFFAP1363.Nebesny, Budryn, et al., 200730. m/0.32 mm/0.5 μm, N2, 35. C @ 5. min, 4. K/min, 320. C @ 45. min
CapillaryDB-Wax1322.Fujioka and Shibamoto, 200660. m/0.25 mm/0.25 μm, He, 2. K/min, 200. C @ 90. min; Tstart: 50. C
CapillaryDB-Wax1352.Osada and Shibamoto, 2006He, 60. C @ 5. min, 2. K/min, 180. C @ 30. min; Column length: 30. m; Column diameter: 0.25 mm
CapillaryHP-Innowax1323.Isogai, Utsunomiya, et al., 200530. m/0.25 mm/0.25 μm, He, 40. C @ 5. min, 5. K/min, 240. C @ 15. min
CapillaryTC-Wax1359.Ishikawa, Ito, et al., 200460. m/0.25 mm/0.5 μm, He, 40. C @ 8. min, 3. K/min; Tend: 230. C
CapillaryDB-Wax1357.Yanagimoto, Ochi, et al., 200430. m/0.25 mm/0.25 μm, He, 3. K/min, 180. C @ 40. min; Tstart: 50. C
CapillaryDB-Wax1342.Lin, Cai, et al., 200330. m/0.25 mm/0.25 μm, He, 50. C @ 2. min, 3. K/min, 230. C @ 20. min
CapillaryHP-FFAP1321.Qian and Reineccius, 200225. m/0.32 mm/0.52 μm, 60. C @ 1. min, 5. K/min, 240. C @ 5. min
CapillaryHP-Wax1372.Sanz, Maeztu, et al., 200260. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryHP-Wax1372.Maeztu, Sanz, et al., 200160. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryHP-Wax1372.Sanz, Ansorena, et al., 200160. m/0.25 mm/0.5 μm, He, 40. C @ 6. min, 3. K/min; Tend: 190. C
CapillaryDB-Wax1345.Lee and Shibamoto, 200030. m/0.25 mm/0.25 μm, He, 3. K/min, 180. C @ 40. min; Tstart: 50. C
CapillaryDB-Wax1344.Buttery, Orts, et al., 199930. C @ 4. min, 2. K/min, 170. C @ 60. min; Column length: 60. m; Column diameter: 0.32 mm
CapillaryDB-Wax1371.Iwatsuki, Mizota, et al., 19994. K/min; Column length: 30. m; Column diameter: 0.53 mm; Tstart: 60. C; Tend: 210. C
CapillaryDB-Wax1344.Buttery and Ling, 199830. C @ 4. min, 2. K/min, 170. C @ 30. min; Column length: 60. m; Column diameter: 0.25 mm
CapillaryDB-Wax1360.Sekiwa, Kubota, et al., 1997He, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tstart: 60. C; Tend: 180. C
CapillaryPEG-20M1314.Kubota, Matsujage, et al., 199650. m/0.25 mm/0.25 μm, Nitrogen, 2. K/min; Tstart: 60. C; Tend: 180. C
CapillaryDB-Wax1343.Umano, Hagi, et al., 1995He, 40. C @ 2. min, 2. K/min; Column length: 60. m; Column diameter: 0.25 mm; Tend: 200. C
CapillaryCarbowax 20M1330.Egolf and Jurs, 19932. K/min; Column length: 80. m; Column diameter: 0.2 mm; Tstart: 70. C; Tend: 170. C
CapillaryDB-Wax1338.Eiserich, Macku, et al., 1992He, 60. C @ 4. min, 4. K/min, 180. C @ 30. min; Column length: 60. m; Column diameter: 0.25 mm
CapillaryCarbowax 20M1312.Vernin, Metzger, et al., 1992He, 3. K/min; Column length: 50. m; Column diameter: 0.33 mm; Tstart: 60. C; Tend: 200. C
CapillaryCarbowax 20M1328.Kawakami and Kobayashi, 1991He, 60. C @ 4. min, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tend: 180. C
CapillaryPEG-20M1314.Kubota, Nakamoto, et al., 1991N2, 2. K/min; Column length: 50. m; Column diameter: 0.25 mm; Tstart: 60. C; Tend: 180. C
CapillaryDB-Wax1318.Pfannhauser, 199030, 30. C @ 10. min, 50. K/min; Column diameter: 0.25 mm; Tend: 240. C
CapillaryFFAP1330.Vernin, Metzger, et al., 1988He, 60. C @ 5. min, 2. K/min; Column length: 50. m; Column diameter: 0.28 mm; Tend: 240. C
CapillaryDB-Wax1341.Wong and Bernhard, 1988He, 70. C @ 8. min, 2. K/min; Column length: 30. m; Column diameter: 0.25 mm; Tend: 160. C
CapillaryCarbowax 20M1341.Wu, Liou, et al., 1987Hydrogen, 1. K/min, 200. C @ 35. min; Column length: 50. m; Column diameter: 0.20 mm; Tstart: 50. C
CapillaryCarbowax 20M1309.Mihara and Enomoto, 1985N2, 2. K/min; Column length: 50. m; Column diameter: 0.22 mm; Tstart: 80. C; Tend: 200. C
CapillaryCarbowax 20M1332.Liardon and Ledermann, 1980H2, 2. K/min; Column length: 39. m; Column diameter: 0.30 mm; Tstart: 60. C; Tend: 220. C
CapillaryCarbowax 20M1336.Shibamoto and Russell, 19771. K/min; Column length: 100. m; Column diameter: 0.25 mm; Tstart: 70. C; Tend: 170. C
CapillaryCarbowax 20M1340.Shibamoto and Russell, 19771. K/min; Column length: 100. m; Column diameter: 0.25 mm; Tstart: 70. C; Tend: 170. C

Normal alkane RI, polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryDB-FFAP1336.Mebazaa, Mahmoudi, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: 50 0C 2 0C/min -> 100 0C (5 min) 5 0C/min -> 250 0C
CapillaryDB-FFAP1315.Mebazaa, Mahmoudi, et al., 200930. m/0.25 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-Wax1345.Gonzalez-Rios, Suarez-Quiroz, et al., 200730. m/0.25 mm/0.25 μm, Hydrogen; Program: 44 0C 3 0C/min -> 170 0C 8 0C/min -> 250 0C
CapillaryDB-Wax1372.Gonzalez-Rios, Suarez-Quiroz, et al., 200730. m/0.25 mm/0.25 μm, Hydrogen; Program: not specified
CapillaryHP-Innowax1353.Viegas and Bassoli, 200760. m/0.32 mm/0.25 μm, Helium; Program: 40 0C (5 min) 4 0C/min -> 60 0C (5 min) 8 0C/min -> 250 0C (3 min)
CapillaryHP-Innowax1355.Viegas and Bassoli, 200760. m/0.32 mm/0.25 μm, Helium; Program: not specified
CapillaryDB-Wax1306.Krings, Zelena, et al., 200630. m/0.32 mm/0.25 μm, He; Program: 45C(5min) => 5C/min => 150C => 10C/min => 240C (10min)
CapillaryFFAP1353.Didzbalis, Ritter, et al., 200430. m/0.32 mm/0.25 μm, He; Program: 35C(1min) => 60C/min => 60C => 6C/min => 230C
CapillaryInnowax1358.Ito and Mori, 200430. m/0.25 mm/0.50 μm, Helium; Program: 40 0C (2 min) 10 0C/min -> 100 0C 3 0C/min -> 160 0C 5 0C/min -> 260 0C (10 min)
CapillaryCarbowax 20M1330.Vinogradov, 2004Program: not specified
CapillaryCarbowax 20M1340.Vernin, Lageot, et al., 1998Program: not specified
CapillaryCarbowax 20M1340.Vernin, Lageot, et al., 1998Program: not specified
CapillarySupelcowax-101330.Chang, Seitz, et al., 199530. m/0.32 mm/0.25 μm, He; Program: 50C(2min) => 7C/min => 140C => 17.5C/min => 230C
CapillaryCarbowax 20M1309.Mihara and Masuda, 1987Program: not specified
CapillaryCarbowax 400, Carbowax 20M, Carbowax 1540, Carbowax 4000, Superox 06, PEG 20M, etc.1338.Waggott and Davies, 1984Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Ribeiro da Silva, Morais, et al., 1996
Ribeiro da Silva, M.A.V.; Morais, V.M.F.; Matos, M.A.R.; Rio, C.M.A.; Piedade, G.M.G.S., Thermochemical and theoretical study of some methyldiazines, Struct. Chem., 1996, 7, 329-336. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Morais, Miranda, et al., 2003
Morais, Victor M.F.; Miranda, Margarida S.; Matos, M. Agostinha R., Thermochemical study of the ethylpyridine and ethylpyrazine isomers, Org. Biomol. Chem., 2003, 1, 23, 4329-712, https://doi.org/10.1039/b308097h . [all data]

Samusenko and Golovnya, 1988
Samusenko, A.L.; Golovnya, R.V., Prediction of the retention indices of methyl pyridines and pyrazines in capillary gas chromatography based on the non-linear additivity of the sorption energy, Chromatographia, 1988, 25, 6, 531-535, https://doi.org/10.1007/BF02324828 . [all data]

Golovnya, Samusenko, et al., 1987
Golovnya, R.V.; Samusenko, A.L.; Dmitriev, L.B., Behavior of methyl-substituted pyrazines and use of the principle of nonadditive change in the sorption energy for prediction of the retention indices in capillary gas chromatography, Zh. Anal. Khim., 1987, 42, 4, 558-563. [all data]

Takeoka, Perrino, et al., 1996
Takeoka, G.; Perrino, C., Jr.; Buttery, R., Volatile constituents of used frying oils, J. Agric. Food Chem., 1996, 44, 3, 654-660, https://doi.org/10.1021/jf950430m . [all data]

Shibamoto, Kamiya, et al., 1981
Shibamoto, T.; Kamiya, Y.; Mihara, S., Isolation and identification of volatile compounds in cooked meat: sukiyaki, J. Agric. Food Chem., 1981, 29, 1, 57-63, https://doi.org/10.1021/jf00103a015 . [all data]

Yeo and Shibamoto, 1991
Yeo, H.C.H.; Shibamoto, T., Microwave-induced volatiles of the Maillard model system under different pH conditions, J. Agric. Food Chem., 1991, 39, 2, 370-373, https://doi.org/10.1021/jf00002a029 . [all data]

Mahadevan and Farmer, 2006
Mahadevan, K.; Farmer, L., Key Odor Impact Compounds in Three Yeast Extract Pastes, J. Agric. Food Chem., 2006, 54, 19, 7242-7250, https://doi.org/10.1021/jf061102x . [all data]

Bredie, Mottram, et al., 2002
Bredie, W.L.P.; Mottram, D.S.; Guy, R.C.E., Effect of temperature and pH on the generation of flavor volatiles in extrusion cooking of wheat flour, J. Agric. Food Chem., 2002, 50, 5, 1118-1125, https://doi.org/10.1021/jf0111662 . [all data]

Ames, Guy, et al., 2001
Ames, J.M.; Guy, R.C.E.; Kipping, G.J., Effect of pH and temperature on the formation of volatile compounds in cysteine/reducing sugar/starch mixtures during extrusion cooking, J. Agric. Food Chem., 2001, 49, 4, 1885-1894, https://doi.org/10.1021/jf0012547 . [all data]

Ames, Guy, et al., 2001, 2
Ames, J.M.; Guy, R.C.E.; Kipping, G.J., Effect of pH, temperature, and moisture on the formation of volatile compounds in glycine/glucose model systems, J. Agric. Food Chem., 2001, 49, 9, 4315-4323, https://doi.org/10.1021/jf010198m . [all data]

Kim, 2001
Kim, J.S., Einfluss der Temperatur beim Rösten von Sesam auf Aroma und antioxidative Eigenschaften des Öls, PhD Thesis, Technischen Universität Berlin zur Erlangung des akademischen Grades, Berlin, 2001, 151. [all data]

Whitfield and Mottram, 2001
Whitfield, F.B.; Mottram, D.S., Heterocyclic volatiles formed by heating cysteine or hydrogen sulfide with 4-hydroxy-5-methyl-3(2H)-furanone at pH 6.5, J. Agric. Food Chem., 2001, 49, 2, 816-822, https://doi.org/10.1021/jf0008644 . [all data]

Moio, Piombino, et al., 2000
Moio, L.; Piombino, P.; Addeo, F., Odour-impact compounds of Gorgonzola cheese, J. Dairy Res., 2000, 67, 2, 273-285, https://doi.org/10.1017/S0022029900004106 . [all data]

Wu, Wang, et al., 2000
Wu, C.-M.; Wang, Z.; Wu, Q.H., Volatile compounds produced from monosodium glutamate in common food cooking, J. Agric. Food Chem., 2000, 48, 6, 2438-2442, https://doi.org/10.1021/jf9907743 . [all data]

Hill, Isaacs, et al., 1999
Hill, V.M.; Isaacs, N.S.; Ledward, D.A.; Ames, J.M., Effect of high hydrostatic pressure on the volatile components of a glucose-lysine model system, J. Agric. Food Chem., 1999, 47, 9, 3675-3681, https://doi.org/10.1021/jf990124z . [all data]

Moio and Addeo, 1998
Moio, L.; Addeo, F., Grana Padano cheese aroma, J. Dairy Res., 1998, 65, 2, 317-333, https://doi.org/10.1017/S0022029997002768 . [all data]

Ames, Defaye, et al., 1997
Ames, J.M.; Defaye, A.B.; Bates, L., The effect of pH on the volatiles formed in an extruded starch-glucose-lysine model system, Food Chem., 1997, 58, 4, 323-327, https://doi.org/10.1016/S0308-8146(96)00171-9 . [all data]

DeMilo, Lee, et al., 1996
DeMilo, A.B.; Lee, C.-J.; Moreno, D.S.; Martinez, A.J., Identification of volatiles derived from Citrobacter freundii fermentation of a trypticase soy broth, J. Agric. Food Chem., 1996, 44, 2, 607-612, https://doi.org/10.1021/jf950525o . [all data]

Lee, DeMilo, et al., 1995
Lee, C.-J.; DeMilo, A.B.; Moreno, D.S.; Martinez, A.J., Analysis of the volatile components of a bacterial fermentation that is attractive to the Mexican fruit fly, Anastrepha ludens, J. Agric. Food Chem., 1995, 43, 5, 1348-1351, https://doi.org/10.1021/jf00053a041 . [all data]

Oh, Hartman, et al., 1992
Oh, Y.-C.; Hartman, T.G.; Ho, C.-T., Volatile compounds generated from the Maillard reaction of pro-gly, gly-pro, and a mixture of glycine and proline with glucose, J. Agric. Food Chem., 1992, 40, 10, 1878-1880, https://doi.org/10.1021/jf00022a030 . [all data]

Zhang, Dorjpalam, et al., 1992
Zhang, Y.; Dorjpalam, B.; Ho, C.-T., Contribution of peptides to volatile formation in the Maillard reaction of casein hydrolysate with glucose, J. Agric. Food Chem., 1992, 40, 12, 2467-2471, https://doi.org/10.1021/jf00024a026 . [all data]

Golovnya, Samusenko, et al., 1991
Golovnya, R.V.; Samusenko, A.L.; Sagalovich, V.P., Prediction of retention indices for methyl-substituted pyrazines in capillary gas chromatography with linear programming, Zh. Anal. Khim., 1991, 46, 4, 727-735. [all data]

Izzo and Ho, 1991
Izzo, H.V.; Ho, C.-T., Isolation and identification of the volatile components of an extruded autolyzed yeast extract, J. Agric. Food Chem., 1991, 39, 12, 2245-2248, https://doi.org/10.1021/jf00012a029 . [all data]

Misharina, Golovnya, et al., 1991
Misharina, T.A.; Golovnya, R.V.; Yakovleva, V.N.; Vitt, S.V., Pyrazines formed in model glycerin-water systems, Russ. Chem. Bull. (Engl. Transl.), 1991, 40, 9, 1742-1748, https://doi.org/10.1007/BF00960396 . [all data]

Zhang and Ho, 1991
Zhang, Y.; Ho, C.-T., Comparison of the volatile compounds formed from the thermal reaction of glucose with cysteine and glutathione, J. Agric. Food Chem., 1991, 39, 4, 760-763, https://doi.org/10.1021/jf00004a029 . [all data]

Lu, Hao, et al., 2005
Lu, C.-Y.; Hao, Z.; Payne, R.; Ho, C.-T., Effects of water content on volatile generation and peptide degradation in the Maillard reaction of glycine, diglycine, and triglycine, J. Agric. Food Chem., 2005, 53, 16, 6443-6447, https://doi.org/10.1021/jf050534p . [all data]

Martin and Ames, 2001
Martin, F.L.; Ames, J.M., Formation of Strecker aldehydes and pyrazines in a fried potato model system, J. Agric. Food Chem., 2001, 49, 8, 3885-3892, https://doi.org/10.1021/jf010310g . [all data]

Martin and Ames, 2001, 2
Martin, F.L.; Ames, J.M., Comparison of flavor compounds of potato chips fried in palmolein and silicone fluid, J. Amer. Oil Chem. Soc., 2001, 78, 8, 863-866, https://doi.org/10.1007/s11746-001-0356-2 . [all data]

Boulanger and Crouzet, 2000
Boulanger, R.; Crouzet, J., Free and bound flavour components of Amazonian fruits: 2. cupuacu volatile compounds, Flavour Fragr. J., 2000, 15, 4, 251-257, https://doi.org/10.1002/1099-1026(200007/08)15:4<251::AID-FFJ905>3.0.CO;2-2 . [all data]

Elmore, Mottram, et al., 2000
Elmore, J.S.; Mottram, D.S.; Enser, M.; Wood, J.D., The effects of diet and breed on the volatile compounds of cooked lamb, Meat Sci., 2000, 55, 2, 149-159, https://doi.org/10.1016/S0309-1740(99)00137-0 . [all data]

Parker, Hassell, et al., 2000
Parker, J.K.; Hassell, G.M.E.; Mottram, D.S.; Guy, R.C.E., Sensory and instrumental analyses of volatiles generated during the extrusion cooking of oat flours, J. Agric. Food Chem., 2000, 48, 8, 3497-3506, https://doi.org/10.1021/jf991302r . [all data]

Elmore, Mottram, et al., 1999
Elmore, J.S.; Mottram, D.S.; Enser, M.; Wood, J.D., Effect of the polyunsaturated fatty acid composition of beef muscle on the profile of aroma volatiles, J. Agric. Food Chem., 1999, 47, 4, 1619-1625, https://doi.org/10.1021/jf980718m . [all data]

Bredie, Mottram, et al., 1998
Bredie, W.L.P.; Mottram, D.S.; Guy, R.C.E., Aroma volatiles generated during extrusion cooking of maize flour, J. Agric. Food Chem., 1998, 46, 4, 1479-1487, https://doi.org/10.1021/jf9708857 . [all data]

Owens J.D., Allagheny N., et al., 1997
Owens J.D.; Allagheny N.; Kipping G.; Ames J.M., Formation of volatile compounds during Bacillus subtilis fermentation of soya beans, J. Sci. Food Agric., 1997, 74, 1, 132-140, https://doi.org/10.1002/(SICI)1097-0010(199705)74:1<132::AID-JSFA779>3.0.CO;2-8 . [all data]

Beal and Mottram, 1994
Beal, A.D.; Mottram, D.S., Compounds contributing to the characteristic aroma of malted barley, J. Agric. Food Chem., 1994, 42, 12, 2880-2884, https://doi.org/10.1021/jf00048a043 . [all data]

Kuo, Zhang, et al., 1989
Kuo, M.-C.; Zhang, Y.; Hartman, T.G.; Rosen, R.T.; Ho, C.-T., Selective purge-and-trap method for the analysis of volatile pyrazines, J. Agric. Food Chem., 1989, 37, 4, 1020-1022, https://doi.org/10.1021/jf00088a045 . [all data]

Pozo-Bayon M.A., Ruiz-Rodriguez A., et al., 2007
Pozo-Bayon M.A.; Ruiz-Rodriguez A.; Pernin K.; Cayot N., Influence of eggs on the aroma composition of a sponge cake and on the aroma release in model studies on flavored sponge cakes, J. Agric. Food Chem., 2007, 55, 4, 1418-1426, https://doi.org/10.1021/jf062203y . [all data]

Lopez-Galilea I., Fournier N., et al., 2006
Lopez-Galilea I.; Fournier N.; Cid C.; Guichard E., Changes in headspace volatile concentrations of coffee brews caused by the roasting process and the brewing procedure, J. Agric. Food Chem., 2006, 54, 22, 8560-8566, https://doi.org/10.1021/jf061178t . [all data]

Bonvehí, 2005
Bonvehí, J.S., Investigation of aromatic compounds in roasted cocoa powder, Eur. Food Res. Technol., 2005, 221, 1-2, 19-29, https://doi.org/10.1007/s00217-005-1147-y . [all data]

Mahajan, Goddik, et al., 2004
Mahajan, S.S.; Goddik, L.; Qian, M.C., Aroma Compounds in Sweet Whey Powder, J. Dairy Sci., 2004, 87, 12, 4057-4063, https://doi.org/10.3168/jds.S0022-0302(04)73547-X . [all data]

Chung, Yung, et al., 2002
Chung, H.-Y.; Yung, I.K.S.; Ma, W.C.J.; Kim, J.-S., Analysis of volatile components in frozen and dried scallops (Patinopecten yessoensis) by gas chromatography/mass spectrometry, Food Res. Int., 2002, 35, 1, 43-53, https://doi.org/10.1016/S0963-9969(01)00107-7 . [all data]

Chung, Yung, et al., 2001
Chung, H.Y.; Yung, I.K.S.; Kim, J.-S., Comparison of volatile components in dried scallops (Chlamys farreri and Patinopecten yessoensis) prepared by boiling and steaming methods, J. Agric. Food Chem., 2001, 49, 1, 192-202, https://doi.org/10.1021/jf000692a . [all data]

Chung, 1999
Chung, H.Y., Volatile components in crabmeats of Charybdis feriatus, J. Agric. Food Chem., 1999, 47, 6, 2280-2287, https://doi.org/10.1021/jf981027t . [all data]

Chung, 1999, 2
Chung, H.Y., Volatile components in fermented soybean (Glycine max) curds, J. Agric. Food Chem., 1999, 47, 7, 2690-2696, https://doi.org/10.1021/jf981166a . [all data]

Shimoda, Nakada, et al., 1997
Shimoda, M.; Nakada, Y.; Nakashima, M.; Osajima, Y., Quantitative comparison of volatile flavor compounds in deep-roasted and light-roasted sesame seed oil, J. Agric. Food Chem., 1997, 45, 8, 3193-3196, https://doi.org/10.1021/jf970172o . [all data]

Shimoda, Peralta, et al., 1996
Shimoda, M.; Peralta, R.R.; Osajima, Y., Headspace gas analysis of fish sauce, J. Agric. Food Chem., 1996, 44, 11, 3601-3605, https://doi.org/10.1021/jf960345u . [all data]

Shimoda, Shiratsuchi, et al., 1996
Shimoda, M.; Shiratsuchi, H.; Nakada, Y.; Wu, Y.; Osajima, Y., Identification and sensory characterization of volatile flavor compounds in sesame seed oil, J. Agric. Food Chem., 1996, 44, 12, 3909-3912, https://doi.org/10.1021/jf960115f . [all data]

Chung and Cadwallader, 1993
Chung, H.Y.; Cadwallader, K.R., Volatile components in blue crab (Callinectes sapidus) meat and processing by-product, J. Food Sci., 1993, 58, 6, 1203-1207, https://doi.org/10.1111/j.1365-2621.1993.tb06148.x . [all data]

Yu, Wu, et al., 1993
Yu, T.-H.; Wu, C.-M.; Ho, C.-T., Volatile compounds of deep-oil fried, microwave-heated, and oven-baked garlic slices, J. Agric. Food Chem., 1993, 41, 5, 800-805, https://doi.org/10.1021/jf00029a023 . [all data]

Tanchotikul and Hsieh, 1989
Tanchotikul, U.; Hsieh, T.C.-Y., Volatile Flavor Components in Crayfish Waste, J. Food Sci., 1989, 54, 6, 1515-1520, https://doi.org/10.1111/j.1365-2621.1989.tb05149.x . [all data]

Baltes and Mevissen, 1988
Baltes, W.; Mevissen, L., Model reactions on roast aroma formation. VI. Volatile reaction products from the reaction of phenylalanine with glucose during cooking and roasting, Z. Lebensm. Unters. Forsch., 1988, 187, 3, 209-214, https://doi.org/10.1007/BF01043341 . [all data]

Salter L.J., Mottram D.S., et al., 1988
Salter L.J.; Mottram D.S.; Whitfield, Volatile compounds produces in Maillard reactions involving glycine, ribose and phospholid, J. Sci. Food Agric., 1988, 46, 2, 227-242, https://doi.org/10.1002/jsfa.2740460211 . [all data]

Whitfield, Mottram, et al., 1988
Whitfield, F.B.; Mottram, D.S.; Brock, S.; Puckey, D.J.; Salter, L.J., Effect of Phospholipid on the Formation of Volatile Heterocyclic Compounds in Heated Aqueous Solutions of Amino Acids and Ribose, J. Sci. Food Agric., 1988, 42, 3, 261-272, https://doi.org/10.1002/jsfa.2740420309 . [all data]

Bianchi, Careri, et al., 2007
Bianchi, F.; Careri, M.; Mangia, A.; Musci, M., Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness, J. Sep. Sci., 2007, 39, 4, 563-572, https://doi.org/10.1002/jssc.200600393 . [all data]

Cantergiani, Brevard, et al., 2001
Cantergiani, E.; Brevard, H.; Krebs, Y.; Feria-Morales, A.; Amadò, R.; Yeretzian, C., Characterisation of the aroma of green Mexican coffee and identification of mouldy/earthy defect, Eur. Food Res. Technol., 2001, 212, 6, 648-657, https://doi.org/10.1007/s002170100305 . [all data]

Baek and Cadwallader, 1996
Baek, H.H.; Cadwallader, K.R., Volatile compounds in flavor concentrates produced from crayfish-processing byproducts with and without protease treatment, J. Agric. Food Chem., 1996, 44, 10, 3262-3267, https://doi.org/10.1021/jf960023q . [all data]

Miyazawa, Marumoto, et al., 2011
Miyazawa, M.; Marumoto, S.; Kobayashi, T.; Yoshida, S.; Utsumi, Y., Determination of characteristic components in essential oils from Wisteria braphybotrys using gas chromatography - olfactometry incremental dilution technique, Rec. Nat. Prod., 2011, 5, 3, 221-227. [all data]

Radulovic, Blagojevic, et al., 2010
Radulovic, N.; Blagojevic, P.; Palic, R., Comparative study of the leaf volatiles of Arctostaphylos uva-ursi (L.) Spreng. and Vaccinium vitis-idaea L. (Ericaceae), Molecules, 2010, 15, 9, 6168-6185, https://doi.org/10.3390/molecules15096168 . [all data]

Du, Clery, et al., 2008
Du, Z.; Clery, R.; Hammond, C.J., Volatile organic nitrogen-containing constituents in ambrette seed Abelmoschus moschatus Medik (Malvaceae), J. Agric. Food Chem., 2008, 56, 16, 7388-7392, https://doi.org/10.1021/jf800958d . [all data]

Risticevic, Carasek, et al., 2008
Risticevic, S.; Carasek, E.; Pawliszyn, J., Headspace solid-phase microextraction-gas chromatographic-time-of-flight mass spectrometric methodology for geographical origin verification of coffee, Anal. Chim. Acta, 2008, 617, 1-2, 72-84, https://doi.org/10.1016/j.aca.2008.04.009 . [all data]

Fadel, Mageed, et al., 2006
Fadel, H.H.M.; Mageed, M.A.A.; Lotfy, S.N., Quality and flavour stability of coffee substitute prepared by extrusion of wheat germ and chicory roots, Amino Acids, 2006, https://doi.org/10.1007/s007260200008 . [all data]

Fadel, Mageed, et al., 2006, 2
Fadel, H.H.M.; Mageed, M.A.A.; Samad, A.K.M.E.A.; Lotfy, S.N., Cocoa substitute: Evaluation of sensory qualities and flavour stability, Eur. Food Res. Technol., 2006, 223, 1, 125-131, https://doi.org/10.1007/s00217-005-0162-3 . [all data]

Leffingwell and Alford, 2005
Leffingwell, J.C.; Alford, E.D., Volatile constituents of Perique tobacco, Electron. J. Environ. Agric. Food Chem., 2005, 4, 2, 899-915. [all data]

van Loon, Linssen, et al., 2005
van Loon, W.A.M.; Linssen, J.P.H.; Legger, A.; Posthumus, M.A.; Voragen, A.G.J., Identification and olfactometry of French fries flavour extracted at mouth conditions, Food Chem., 2005, 90, 3, 417-425, https://doi.org/10.1016/j.foodchem.2004.05.005 . [all data]

Tellez, Khan, et al., 2004
Tellez, M.R.; Khan, I.A.; Schaneberg, B.T.; Crockett, S.L.; Rimando, A.M.; Kobaisy, M., Steam distillation-solid-phase microextraction for the detection of Ephedra sinica in herbal preparations, J. Chromatogr. A, 2004, 1025, 1, 51-56, https://doi.org/10.1016/S0021-9673(03)01035-5 . [all data]

Chen and Ho, 1999
Chen, J.; Ho, C.-T., Comparison of volatile generation in serine/threonine/glutamine-ribose/glucose/fructose model systems, J. Agric. Food Chem., 1999, 47, 2, 643-647, https://doi.org/10.1021/jf980771a . [all data]

Boylston and Viniyard, 1998
Boylston, T.D.; Viniyard, B.T., Isolation of volatile flavor compounds from peanut butter using purge-and-trap technique in Instrumental Methods in Food and Beverage Analysis, D. Wetzel and G. Charalambous, ed(s)., 1998, 225-243. [all data]

Chen and Ho, 1998
Chen, J.; Ho, C.-T., Volatile compounds generated in serine-monosaccharide model systems, J. Agric. Food Chem., 1998, 46, 4, 1518-1522, https://doi.org/10.1021/jf970934f . [all data]

Chen and Ho, 1998, 2
Chen, J.; Ho, C.-T., Volatile compounds formed from thermal degradation of glucosamine in a dry system, J. Agric. Food Chem., 1998, 46, 5, 1971-1974, https://doi.org/10.1021/jf971021o . [all data]

Chen, Wang, et al., 1998
Chen, J.; Wang, M.; Ho, C.-T., Volatile compounds generated from thermal degradation of N-acetylglucosamine, J. Agric. Food Chem., 1998, 46, 8, 3207-3209, https://doi.org/10.1021/jf980129g . [all data]

Tai and Ho, 1998
Tai, C.-Y.; Ho, C.-T., Influence of glutathione oxidation and pH on thermal formation of Maillard-type volatile compounds, J. Agric. Food Chem., 1998, 46, 6, 2260-2265, https://doi.org/10.1021/jf971111t . [all data]

Buttery, Ling, et al., 1997
Buttery, R.G.; Ling, L.C.; Stern, D.J., Studies on popcorn aroma and flavor volatiles, J. Agric. Food Chem., 1997, 45, 3, 837-843, https://doi.org/10.1021/jf9604807 . [all data]

Lu, Yu, et al., 1997
Lu, G.; Yu, T.-H.; Ho, C.-T., Generation of flavor compounds by the reaction of 2-deoxyglucose with selected amino acids, J. Agric. Food Chem., 1997, 45, 1, 233-236, https://doi.org/10.1021/jf960609c . [all data]

Buttery and Ling, 1995
Buttery, R.G.; Ling, L.C., Volatile flavor components of corn tortillas and related products, J. Agric. Food Chem., 1995, 43, 7, 1878-1882, https://doi.org/10.1021/jf00055a023 . [all data]

Yu and Ho, 1995
Yu, T.-H.; Ho, C.-T., Volatile compounds generated from thermal reaction of methionine and methionine sulfoxide with or without glucose, J. Agric. Food Chem., 1995, 43, 6, 1641-1646, https://doi.org/10.1021/jf00054a043 . [all data]

Yu, Wu, et al., 1994
Yu, T.-H.; Wu, C.-M.; Ho, C.-T., Meat-like flavor generated from thermal interactions of glucose and alliin or deoxyalliin, J. Agric. Food Chem., 1994, 42, 4, 1005-1009, https://doi.org/10.1021/jf00040a032 . [all data]

Yu, Wu, et al., 1994, 2
Yu, T.-H.; Wu, C.-M.; Ho, C.-T., Volatile compounds generated from the thermal interaction of glucose and alliin or deoxyalliin in propylene glycol, Food Chem., 1994, 51, 3, 281-286, https://doi.org/10.1016/0308-8146(94)90028-0 . [all data]

Egolf and Jurs, 1993
Egolf, L.M.; Jurs, P.C., Quantitative structure-retention and structure-odor intensity relationships for a diverse group of odor-active compounds, Anal. Chem., 1993, 65, 21, 3119-3126, https://doi.org/10.1021/ac00069a027 . [all data]

Misharina, Golovnya, et al., 1991, 2
Misharina, T.A.; Golovnya, R.V.; Charnomskii, V.V., Volatile components of boiled shrimp funchalia woodwardi and crab geryon maritae, Zh. Anal. Khim., 1991, 46, 1421-1429. [all data]

Flath, Matsumoto, et al., 1989
Flath, R.A.; Matsumoto, K.E.; Binder, R.G.; Cunningham, R.T.; Mon, T.R., Effect of pH on the volatiles of hydrolyzed protein insect baits, J. Agric. Food Chem., 1989, 37, 3, 814-819, https://doi.org/10.1021/jf00087a053 . [all data]

Mihara and Masuda, 1988
Mihara, S.; Masuda, H., Structure-odor relationships for disubstituted pyrazines, J. Agric. Food Chem., 1988, 36, 6, 1242-1247, https://doi.org/10.1021/jf00084a029 . [all data]

Mihara and Masuda, 1987
Mihara, S.; Masuda, H., Correlation between molecular structures and retention indices of pyrazines, J. Chromatogr., 1987, 402, 309-317, https://doi.org/10.1016/0021-9673(87)80029-8 . [all data]

Wu, Liou, et al., 1987
Wu, C.-M.; Liou, S.-E.; Chang, Y.-H.; Chiang, W., Volatile compounds of the wax gourd (Benincasa hispida, Cogn) and a wax gourd beverage, J. Food Sci., 1987, 52, 1, 132-134, https://doi.org/10.1111/j.1365-2621.1987.tb13988.x . [all data]

Mihara and Enomoto, 1985
Mihara, S.; Enomoto, N., Calculation of retention indices of pyrazines on the basis of molecular structure, J. Chromatogr., 1985, 324, 428-430, https://doi.org/10.1016/S0021-9673(01)81342-X . [all data]

del Rosario, de Lumen, et al., 1984
del Rosario, R.; de Lumen, B.O.; Habu, T.; Flath, R.A.; Mon, T.R.; Teranishi, R., Comparison of headspace volatiles from winged beans and soybeans, J. Agric. Food Chem., 1984, 32, 5, 1011-1015, https://doi.org/10.1021/jf00125a015 . [all data]

Lorenz, Stern, et al., 1983
Lorenz, G.; Stern, D.J.; Flath, R.A.; Haddon, W.F.; Tillin, S.J.; Teranishi, R., Identification of sheep liver volatiles, J. Agric. Food Chem., 1983, 31, 5, 1052-1057, https://doi.org/10.1021/jf00119a033 . [all data]

Mebazaa, Mahmoudi, et al., 2009
Mebazaa, R.; Mahmoudi, A.; Fouchet, M.; Dos Santos, M.; Kamissoko, F.; Nafti, A.; Ben Cheikh, R.; Rega, B.; Camel, V., Characterization of volatile compounds in Tunisian fenugreek seeds, Food Chem., 2009, 115, 4, 1326-1336, https://doi.org/10.1016/j.foodchem.2009.01.066 . [all data]

Collin, Nizet, et al., 2008
Collin, S.; Nizet, S.; Muls, S.; Iraqi, R.; Bouseta, A., Characterization of odor-active compounds in extracts obtained by simultaneous extraction/distillation from Moroccan black olives, J. Agric. Food Chem., 2008, 56, 9, 3273-3278, https://doi.org/10.1021/jf073488x . [all data]

Wan Aida, Ho, et al., 2008
Wan Aida, W.M.; Ho, C.W.; Maskat, M.Y.; Osman, H., Relating descriptive sensory analysis to gas chromatography / mass spectrometry of palm sugars using partial least squares regression, ASEAN Food J., 2008, 15, 1, 35-45. [all data]

Characterization of Pyrazines in Some Chinese Liquors and Their Approximate Concentrations, 2007
Characterization of Pyrazines in Some Chinese Liquors; Their Approximate Concentrations, W. Fan; Y. Xu; Y. Zhang, J. Agric. Food Chem., 2007, 55, 9956-9962. [all data]

Ho, Wan Aida, et al., 2007
Ho, C.W.; Wan Aida, W.M.; Maskat, M.Y.; Osman, H., Changes in volatile compounds of palm sap (Arenga pinnata) during the heating process for production of palm sugar, Food Chem., 2007, 102, 4, 1156-1162, https://doi.org/10.1016/j.foodchem.2006.07.004 . [all data]

Counet, Ouwerx, et al., 2004
Counet, C.; Ouwerx, C.; Rosoux, D.; Collin, S., Relationship between procyanidin and flavor contents of cocoa liquors from different origins, J. Agric. Food Chem., 2004, 52, 20, 6243-6249, https://doi.org/10.1021/jf040105b . [all data]

Vinogradov, 2004
Vinogradov, B.A., Production, composition, properties and application of essential oils, 2004, retrieved from http://viness.narod.ru. [all data]

Qian and Reineccius, 2003
Qian, M.; Reineccius, G., Potent aroma compounds in Parmigiano Reggiano cheese studied using a dynamic headspace (purge-trap) method, Flavour Fragr. J., 2003, 18, 3, 252-259, https://doi.org/10.1002/ffj.1194 . [all data]

Counet, Callemien, et al., 2002
Counet, C.; Callemien, D.; Ouwerx, C.; Collin, S., Use of gas chromatography-olfactometry to identify key odorant compounds in dark chocolate. Comparison of samples before and after conching, J. Agric. Food Chem., 2002, 50, 8, 2385-2391, https://doi.org/10.1021/jf0114177 . [all data]

Didzbalis and Ho, 2001
Didzbalis, J.; Ho, C.-T., Analysis of low molecular weight aldehydes formed during the Mallard reaction, ACS Symposium Series, 2001, 794, 196-107. [all data]

Kawai, Ishida, et al., 1991
Kawai, T.; Ishida, Y.; Kakiuchi, H.; Ikeda, N.; Higashida, T.; Nakamura, S., Flavor components of dried squid, J. Agric. Food Chem., 1991, 39, 4, 770-777, https://doi.org/10.1021/jf00004a031 . [all data]

Waggott and Davies, 1984
Waggott, A.; Davies, I.W., Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]

Puvipirom and Chaisei, 2012
Puvipirom, J.; Chaisei, S., Contribution of roasted grains and seeds in aroma of oleang (Thai coffee drink), Int. Food Res. J., 2012, 19, 2, 583-588. [all data]

Budryn, Nebesny, et al., 2011
Budryn, G.; Nebesny, E.; Kula, J.; Majda, T.; Krysiak, W., HS-SPME/GC/MS Profiles of convectively and microwave roasted Ivory Coast Robusta coffee brews, Czech. J. Food Sci., 2011, 29, 2, 151-160. [all data]

Moon and Shibamoto, 2009
Moon, J.-K.; Shibamoto, T., Role of roasting conditions in the profile of volatile flavor chemicals formed from coffee beans, J. Agric. Food Chem., 2009, 57, 13, 5823-5831, https://doi.org/10.1021/jf901136e . [all data]

Marin, Pozrl, et al., 2008
Marin, K.; Pozrl, T.; Zlatic, E.; Plestenjak, A., A new aroma index to determine the aroma quality of roasted and ground coffee during storage, Food Technol. Biotechnol., 2008, 46, 4, 442-447. [all data]

Nebesny, Budryn, et al., 2007
Nebesny, E.; Budryn, G.; Kula, J.; Majda, T., The effect of roasting method on headspace composition of robusta coffee bean aroma, Eur. Food Res. Technol., 2007, 225, 1, 9-19, https://doi.org/10.1007/s00217-006-0375-0 . [all data]

Fujioka and Shibamoto, 2006
Fujioka, K.; Shibamoto, T., Quantitation of volatiles and nonvolatile acids in an extract from coffee beverages: correlation with antioxidant activity, J. Agric. Food Chem., 2006, 54, 16, 6054-6058, https://doi.org/10.1021/jf060460x . [all data]

Osada and Shibamoto, 2006
Osada, Y.; Shibamoto, T., Antioxidative activity of volatile extracts from Maillard model systems, Food Chem., 2006, 98, 3, 522-528, https://doi.org/10.1016/j.foodchem.2005.05.084 . [all data]

Isogai, Utsunomiya, et al., 2005
Isogai, A.; Utsunomiya, H.; Kanda, R.; Iwata, H., Changes in the Aroma Compounds of Sake during Aging, J. Agric. Food Chem., 2005, 53, 10, 4118-4123, https://doi.org/10.1021/jf047933p . [all data]

Ishikawa, Ito, et al., 2004
Ishikawa, M.; Ito, O.; Ishizaki, S.; Kurobayashi, Y.; Fujita, A., Solid-phase aroma concentrate extraction (SPACE ): a new headspace technique for more sensitive analysis of volatiles, Flavour Fragr. J., 2004, 19, 3, 183-187, https://doi.org/10.1002/ffj.1322 . [all data]

Yanagimoto, Ochi, et al., 2004
Yanagimoto, K.; Ochi, H.; Lee, K.-G.; Shibamoto, T., Antioxidative activities of fractions obtained from brewed coffee, J. Agric. Food Chem., 2004, 52, 3, 592-596, https://doi.org/10.1021/jf030317t . [all data]

Lin, Cai, et al., 2003
Lin, P.; Cai, J.; Li, J.; Sang, W.; Su, Q., Constituents of the essential oil of Hemerocallis flava day lily, Flavour Fragr. J., 2003, 18, 6, 539-541, https://doi.org/10.1002/ffj.1264 . [all data]

Qian and Reineccius, 2002
Qian, M.; Reineccius, G., Identification of aroma compounds in Parmigiano-Reggiano cheese by gas chromatography/olfactometry, J. Dairy Sci., 2002, 85, 6, 1362-1369, https://doi.org/10.3168/jds.S0022-0302(02)74202-1 . [all data]

Sanz, Maeztu, et al., 2002
Sanz, C.; Maeztu, L.; Zapelena, M.J.; Bello, J.; Cid, C., Profiles of volatile compounds and sensory analysis of three blends of coffee: influence of different proportions of Arabica and Robusta and influence of roasting coffee with sugar, J. Sci. Food Agric., 2002, 82, 8, 840-847, https://doi.org/10.1002/jsfa.1110 . [all data]

Maeztu, Sanz, et al., 2001
Maeztu, L.; Sanz, C.; Andueza, S.; de Peña, M.P.; Bello, J.; Cid, C., Characterization of espresso coffee aroma by static headspace GC-MS and sensory flavor profile, J. Agric. Food Chem., 2001, 49, 11, 5437-5444, https://doi.org/10.1021/jf0107959 . [all data]

Sanz, Ansorena, et al., 2001
Sanz, C.; Ansorena, D.; Bello, J.; Cid, C., Optimizing headspace temperature and time sampling for identification of volatile compounds in ground roasted Arabica coffee, J. Agric. Food Chem., 2001, 49, 3, 1364-1369, https://doi.org/10.1021/jf001100r . [all data]

Lee and Shibamoto, 2000
Lee, K.-G.; Shibamoto, T., Antioxidant properties of aroma compounds isolated from soybeans and mung beans, J. Agric. Food Chem., 2000, 48, 9, 4290-4293, https://doi.org/10.1021/jf000442u . [all data]

Buttery, Orts, et al., 1999
Buttery, R.G.; Orts, W.J.; Takeoka, G.R.; Nam, Y., Volatile flavor components of rice cakes, J. Agric. Food Chem., 1999, 47, 10, 4353-4356, https://doi.org/10.1021/jf990140w . [all data]

Iwatsuki, Mizota, et al., 1999
Iwatsuki, K.; Mizota, Y.; Kubota, T.; Nishimura, O.; Masuda, H.; Sotoyama, K.; Tomita, M., Aroma extract dilution analysis. Evluation of aroma of pasteurized and UHT processed milk by aroma extract dilution analysis, Nippon Shokuhin Kagaku Kogaku Kaishi, 1999, 46, 9, 587-597, https://doi.org/10.3136/nskkk.46.587 . [all data]

Buttery and Ling, 1998
Buttery, R.G.; Ling, L.C., Additional studies on flavor components of corn tortilla chips, J. Agric. Food Chem., 1998, 46, 7, 2764-2769, https://doi.org/10.1021/jf980125b . [all data]

Sekiwa, Kubota, et al., 1997
Sekiwa, Y.; Kubota, K.; Kobayashi, A., Characteristic flavor components in the brew of cooked clam (Meretrix lusoria) and the effect of storage on flavor formation, J. Agric. Food Chem., 1997, 45, 3, 826-830, https://doi.org/10.1021/jf960433e . [all data]

Kubota, Matsujage, et al., 1996
Kubota, K.; Matsujage, Y.; Sekiwa, Y.; Kobayashi, A., Identification of the characteristic volatile flavor compounds formed by cooking squid (Todarodes pacificus Steenstrup), Food Sci. Technol., 1996, 2, 3, 163-166. [all data]

Umano, Hagi, et al., 1995
Umano, K.; Hagi, Y.; Nakahara, K.; Shyoji, A.; Shibamoto, T., Volatile chemicals formed in the headspace of a heated D-glucose/L-cysteine Maillard model system, J. Agric. Food Chem., 1995, 43, 8, 2212-2218, https://doi.org/10.1021/jf00056a046 . [all data]

Eiserich, Macku, et al., 1992
Eiserich, J.P.; Macku, C.; Shibamoto, T., Volatile antioxidants formed from an L-cysteine/D-glucose Maillard model system, J. Agric. Food Chem., 1992, 40, 10, 1982-1988, https://doi.org/10.1021/jf00022a050 . [all data]

Vernin, Metzger, et al., 1992
Vernin, G.; Metzger, J.; Boniface, C.; Murello, M.-H.; Siouffi, A.; Larice, J.-L.; Parkanyi, C., Kinetics and thermal degradation of the fructose-methionine Amadori intermediates. GC-MS/SPECMA data bank identification of volatile aroma compounds, Carbohyd. Res., 1992, 230, 1, 15-29, https://doi.org/10.1016/S0008-6215(00)90510-X . [all data]

Kawakami and Kobayashi, 1991
Kawakami, M.; Kobayashi, A., Volatitle constituents of greem mate and roasted mate, J. Agric. Food Chem., 1991, 39, 7, 1275-1279, https://doi.org/10.1021/jf00007a016 . [all data]

Kubota, Nakamoto, et al., 1991
Kubota, K.; Nakamoto, A.; Moriguchi, M.; Kobayashi, A.; Ishii, H., Formation of pyrrolidino[1,2-e]-4H-2,4-dimethyl-1,3,5-dithiazine in the volatiles of boiled short-necked clam, clam, and corbicula, J. Agric. Food Chem., 1991, 39, 6, 1127-1130, https://doi.org/10.1021/jf00006a027 . [all data]

Pfannhauser, 1990
Pfannhauser, W., Fluchtige Verbindungen aus extrudaten von triticale, Deutsche Lebensmittel-Rundschau, 1990, 86, 3, 69-72. [all data]

Vernin, Metzger, et al., 1988
Vernin, G.; Metzger, J.; Obretenov, T.; Suon, K.-N.; Fraisse, D., GC/MS (EI,PCI,SIM)-data bank analysis of volatile compounds arising from thermal degradation of glucose-valine amadori intermediates in Flavors and Fragrances: A World Perspective. Proceedings of the 10th International Congress of Essential Oils, Fragrances and Flavors, Lawrence,B.M.; Mookherjee,B.D.; Willis,B.J., ed(s)., Elsevier, New York, 1988, 999-1028. [all data]

Wong and Bernhard, 1988
Wong, J.M.; Bernhard, R.A., Effect of nitrogen source on pyrazine formation, J. Agric. Food Chem., 1988, 36, 1, 123-129, https://doi.org/10.1021/jf00079a032 . [all data]

Liardon and Ledermann, 1980
Liardon, R.; Ledermann, S., volatile components of fermented soya hydrolysate. II. Composition of basic fraction, Z. Lebensm. Unters. Forsch., 1980, 170, 3, 208-213, https://doi.org/10.1007/BF01042542 . [all data]

Shibamoto and Russell, 1977
Shibamoto, T.; Russell, G.F., A study of the volatiles isolated from a D-glucose-hydrogen sulfide-ammonia model system, J. Agric. Food Chem., 1977, 25, 1, 109-112, https://doi.org/10.1021/jf60209a054 . [all data]

Gonzalez-Rios, Suarez-Quiroz, et al., 2007
Gonzalez-Rios, O.; Suarez-Quiroz, M.L.; Boulanger, R.; Barel, M.; Guyot, B.; Guiraud, J.-P.; Schorr-Galindo, S., Impact of ecological post-harvest processing of coffee aroma: II Roasted coffee., J. Food Composition Analysis, 2007, 20, 3-4, 297-307, https://doi.org/10.1016/j.jfca.2006.12.004 . [all data]

Viegas and Bassoli, 2007
Viegas, M.C.; Bassoli, D.G., Utilizacao do indice de retencao linear para caracterizacao de compostos volateis em cafe soluvel utilizando GC-MS e coluna HP-Innowax, Quim. Nova, 2007, 30, 8, 2031-2034, https://doi.org/10.1590/S0100-40422007000800040 . [all data]

Krings, Zelena, et al., 2006
Krings, U.; Zelena, K.; Wu, S.; Berger, R.G., Thin-layer high-vacuum distillation to isolate volatile flavour compounds of cocoa powder, Eur. Food Res. Technol., 2006, 223, 5, 675-681, https://doi.org/10.1007/s00217-006-0252-x . [all data]

Didzbalis, Ritter, et al., 2004
Didzbalis, J.; Ritter, K.A.; Trail, A.C.; Plog, F.J., Identification of fruity/fermented odorants in high-temperature-cured roasted peanuts, J. Agric. Food Chem., 2004, 52, 15, 4828-4833, https://doi.org/10.1021/jf0355250 . [all data]

Ito and Mori, 2004
Ito, K.; Mori, M., Formation of pyrazines in aqueous maltose/glucose/fructose-glutamide model systems upon heating at below 100 0C, Food Sci. Technol. Res., 2004, 10, 2, 199-204, https://doi.org/10.3136/fstr.10.199 . [all data]

Vernin, Lageot, et al., 1998
Vernin, G.; Lageot, C.; Parkanyi, C., GC-MS(EI, PCI, NCI, SIM, ITMS) Data Bank Analysis of Flavors and Fragrances. Kovats indices in Instrumental Methods on Food and Beverage Analysis, D. Wetzel, G. Charalambous, ed(s)., Elsevier Sci. B.V., Amsterdam, 1998, 245-301. [all data]

Chang, Seitz, et al., 1995
Chang, C.-Y.; Seitz, L.M.; Chambers, E., IV, Volatile Flavor Components of Breads Made from Hard Red Winter Wheat and Hard White Winter Wheat, Cereal Chem., 1995, 72, 3, 237-242. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References