2-Butene, (Z)-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-7.7 ± 1.3kJ/molCmProsen, Maron, et al., 1951ALS
Quantity Value Units Method Reference Comment
Δcgas-2709.8 ± 1.2kJ/molCmProsen, Maron, et al., 1951Corresponding Δfgas = -7.57 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
45.0150.Thermodynamics Research Center, 1997p=1 bar. The difference between recommended values and obtained by [ Aston J.D., 1946] is inside the range of uncertainties of these two statistical calculations. The values of S and Cp calculated by [ Scott R.B., 1944] and [ Kilpatrick J.E., 1946] are little lower than recommended ones.; GT
51.23100.
55.45150.
61.73200.
74.89273.15
80.15298.15
80.55300.
102.73400.
123.64500.
141.91600.
157.66700.
171.27800.
183.06900.
193.301000.
202.181100.
209.901200.
216.591300.
222.411400.
227.481500.
237.551750.
244.852000.
250.262250.
254.332500.
257.452750.
259.873000.

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
70.8 ± 1.6250.Scott R.B., 1944Please also see Kistiakowsky G.B., 1940.; GT
71.1 ± 1.6255.
71.7 ± 1.7260.
72.3 ± 1.7265.
72.9 ± 1.7270.
73.9 ± 1.7275.
74.7 ± 1.7280.
75.9 ± 1.8285.
77.2 ± 1.8290.
78.5 ± 1.8295.
81.13 ± 0.16298.58
79.9 ± 1.8300.
88.24 ± 0.18332.85
96.27 ± 0.19371.24

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
liquid220.J/mol*KN/AChao, Hall, et al., 1983 
liquid219.91J/mol*KN/AScott, Ferguson, et al., 1944 
liquid212.88J/mol*KN/ATodd and Parks, 1936Extrapolation below 90 K, 48.95 J/mol*K.

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
127.298.15Chao, Hall, et al., 1983T = 5 to 367 K.
130.00299.8Schlinger and Sage, 1952T = 80 to 200°F.
126.15298.15Scott, Ferguson, et al., 1944T = 15 to 300 K.
118.87266.6Todd and Parks, 1936T = 93 to 267 K. Value is unsmoothed experimental datum.

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Prosen, Maron, et al., 1951
Prosen, E.J.; Maron, F.W.; Rossini, F.D., Heats of combustion, formation, and insomerization of ten C4 hydrocarbons, J. Res. NBS, 1951, 46, 106-112. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Aston J.D., 1946
Aston J.D., Thermodynamic properties of gaseous 1,3-butadiene and normal butenes above 25 C. Equilibria in the system 1,3-butadiene, n-butenes, and n-butane, J. Chem. Phys., 1946, 14, 67-79. [all data]

Scott R.B., 1944
Scott R.B., Thermodynamic properties of cis-2-butene from 15 to 1500 K, J. Res. Nat. Bur. Stand., 1944, 33, 1-20. [all data]

Kilpatrick J.E., 1946
Kilpatrick J.E., Heat content, free energy function, entropy, and heat capacity of ethylene, propylene, and the four butenes to 1500 K, J. Res. Nat. Bur. Stand, 1946, 37, 163-171. [all data]

Kistiakowsky G.B., 1940
Kistiakowsky G.B., Gaseous heat capacities. III, J. Chem. Phys., 1940, 8, 618-622. [all data]

Chao, Hall, et al., 1983
Chao, J.; Hall, K.R.; Yao, J.M., Thermodynamic properties of simple alkenes, Thermochim. Acta, 1983, 64(3), 285-303. [all data]

Scott, Ferguson, et al., 1944
Scott, R.B.; Ferguson, W.J.; Brickwedde, F.G., Thermodynamic properties of cis-2-butene from 15° to 1,500 K, J. Res. NBS, 1944, 33, 1-20. [all data]

Todd and Parks, 1936
Todd, S.S.; Parks, G.S., Thermal data on organic compounds. XV. Some heat capacity, entropy and free energy data for the isomeric butenes, J. Am. Chem. Soc., 1936, 58, 134-137. [all data]

Schlinger and Sage, 1952
Schlinger, W.G.; Sage, B.H., Isobaric heat capacities at bubble point. cis-2-butene, isopropylbenzene, and n-decane, Ind. Eng. Chem., 1952, 44, 2454-2456. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References