Hexane, 3-methyl-
- Formula: C7H16
- Molecular weight: 100.2019
- IUPAC Standard InChIKey: VLJXXKKOSFGPHI-UHFFFAOYSA-N
- CAS Registry Number: 589-34-4
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Stereoisomers:
- Other names: 2-Ethylpentane; 3-Methylhexane
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -227.4 ± 1.3 | kJ/mol | Ccb | Prosen and Rossini, 1945 | ALS |
ΔfH°liquid | -228. ± 1. | kJ/mol | Ccb | Davies and Gilbert, 1941 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -4813.9 ± 1.2 | kJ/mol | Ccb | Prosen and Rossini, 1945 | Corresponding ΔfHºliquid = -227.3 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -4813. ± 1. | kJ/mol | Ccb | Davies and Gilbert, 1941 | Corresponding ΔfHºliquid = -228.6 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 309.6 | J/mol*K | N/A | Huffman, Parks, et al., 1930 | Extrapolation below 70 K, 70.71 J/mol*K. Forms glass at low temperatures. Value includes estimated zero point entropy of 17 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
216.7 | 289.2 | Parks, Thomas, et al., 1936 | T = 71 to 290 K. Glass at lower temperatures. Value is unsmoothed experimental datum.; DH |
214.2 | 289.2 | Huffman, Parks, et al., 1930 | T = 71 to 289 K. Value is unsmoothed experimental datum.; DH |
Phase change data
Go To: Top, Condensed phase thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 365.0 ± 0.3 | K | AVG | N/A | Average of 34 out of 38 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 153.75 | K | N/A | Timmermans, 1921 | Uncertainty assigned by TRC = 0.5 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 535.2 ± 0.4 | K | N/A | Daubert, 1996 | |
Tc | 535.2 | K | N/A | Majer and Svoboda, 1985 | |
Tc | 535.19 | K | N/A | McMicking and Kay, 1965 | Uncertainty assigned by TRC = 0.4 K; TRC |
Tc | 535.55 | K | N/A | Edgar and Calingaert, 1929 | Uncertainty assigned by TRC = 0.5 K; measured by Keys and Kleinschmidt; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 28.1 ± 0.4 | bar | N/A | Daubert, 1996 | |
Pc | 28.135 | bar | N/A | McMicking and Kay, 1965 | Uncertainty assigned by TRC = 0.4053 bar; TRC |
Pc | 28.50 | bar | N/A | Edgar and Calingaert, 1929 | Uncertainty assigned by TRC = 51.334 bar; measured by Keys and Kleinschmidt; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 0.404 | l/mol | N/A | Daubert, 1996 | |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 2.47 ± 0.04 | mol/l | N/A | Daubert, 1996 | |
ρc | 2.48 | mol/l | N/A | McMicking and Kay, 1965 | Uncertainty assigned by TRC = 0.05 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 35.16 | kJ/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 35.1 ± 0.1 | kJ/mol | C | Majer, Svoboda, et al., 1979 | AC |
ΔvapH° | 35.1 | kJ/mol | N/A | Reid, 1972 | AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
30.89 | 365. | N/A | Majer and Svoboda, 1985 | |
35.1 | 304. | A | Stephenson and Malanowski, 1987 | Based on data from 289. to 366. K.; AC |
34.2 ± 0.1 | 313. | C | Majer, Svoboda, et al., 1979 | AC |
32.9 ± 0.1 | 333. | C | Majer, Svoboda, et al., 1979 | AC |
31.7 ± 0.1 | 353. | C | Majer, Svoboda, et al., 1979 | AC |
34.9 | 308. | N/A | Forziati, Norris, et al., 1949 | Based on data from 293. to 366. K.; AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kJ/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
298. to 353. | 51.3 | 0.2776 | 535.2 | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
293.06 to 365.89 | 3.99885 | 1243.759 | -53.524 | Forziati, Norris, et al., 1949, 2 | Coefficents calculated by NIST from author's data. |
IR Spectrum
Go To: Top, Condensed phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | NIST Standard Reference Data Program Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center |
State | gas |
Instrument | HP-GC/MS/IRD |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D.,
Heats of combustion and formation of the paraffin hydrocarbons at 25° C,
J. Res. NBS, 1945, 263-267. [all data]
Davies and Gilbert, 1941
Davies, G.F.; Gilbert, E.C.,
Heats of combustion and formation of the nine isomeric heptanes in the liquid state,
J. Am. Chem. Soc., 1941, 63, 2730-2732. [all data]
Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Thomas, S.B.,
Thermal data on organic compounds. VIII. The heat capacities, entropies and free energies of the isomeric heptanes,
J. Am. Chem. Soc., 1930, 52, 3241-3251. [all data]
Parks, Thomas, et al., 1936
Parks, G.S.; Thomas, S.B.; Light, D.W.,
XII. Some new heat capacity data for organic glasses. The entropy and free energy of DL-lactic acid,
J. Chem. Phys., 1936, 4, 64-69. [all data]
Timmermans, 1921
Timmermans, J.,
The Freezing Points of Organic Substances IV. New Exp. Determinations,
Bull. Soc. Chim. Belg., 1921, 30, 62. [all data]
Daubert, 1996
Daubert, T.E.,
Vapor-Liquid Critical Properties of Elements and Compounds. 5. Branched Alkanes and Cycloalkanes,
J. Chem. Eng. Data, 1996, 41, 365-372. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
McMicking and Kay, 1965
McMicking, J.H.; Kay, W.B.,
Vapor Pressures and Saturated Liquid and Vapor Densities of The Isomeric Heptanes and Isomeric Octanes,
Proc., Am. Pet. Inst., Sect. 3, 1965, 45, 75-90. [all data]
Edgar and Calingaert, 1929
Edgar, G.; Calingaert, G.,
Preparation and Properties of the Isomeric Heptanes II. Physical Prop. properties,
J. Am. Chem. Soc., 1929, 51, 1540. [all data]
Majer, Svoboda, et al., 1979
Majer, Vladimír; Svoboda, Václav; Hála, Slavoj; Pick, Jirí,
Temperature dependence of heats of vaporization of saturated hydrocarbons C5-C8; Experimental data and an estimation method,
Collect. Czech. Chem. Commun., 1979, 44, 3, 637-651, https://doi.org/10.1135/cccc19790637
. [all data]
Reid, 1972
Reid, Robert C.,
Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00,
AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Forziati, Norris, et al., 1949
Forziati, Alphonse F.; Norris, William R.; Rossini, Frederick D.,
Vapor pressures and boiling points of sixty API-NBS hydrocarbons,
J. RES. NATL. BUR. STAN., 1949, 43, 6, 555-17, https://doi.org/10.6028/jres.043.050
. [all data]
Forziati, Norris, et al., 1949, 2
Forziati, A.F.; Norris, W.R.; Rossini, F.D.,
Vapor Pressures and Boiling Points of Sixty API-NBS Hydrocarbons,
J. Res. Natl. Bur. Stand. (U.S.), 1949, 43, 6, 555-563, https://doi.org/10.6028/jres.043.050
. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Vc Critical volume ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.