Naphthalene, 1,5-dimethyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Phase change data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Glushko Thermocenter, Russian Academy of Sciences, Moscow

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
41.650.Thermodynamics Research Center, 1997p=1 bar.
71.9100.
101.1150.
130.4200.
174.3273.15
189.3298.15
190.4300.
246.7400.
294.6500.
333.7600.
365.9700.
392.5800.
414.9900.
433.81000.
450.1100.
464.1200.
475.1300.
486.1400.
494.1500.

Phase change data

Go To: Top, Gas phase thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos

Quantity Value Units Method Reference Comment
Tboil538.2KN/AWeast and Grasselli, 1989BS
Tboil542.3KN/AKruber and Oberkobusch, 1951Uncertainty assigned by TRC = 2. K; TRC
Tboil538.KN/ABailey, Bryant, et al., 1947Uncertainty assigned by TRC = 6. K; TRC
Quantity Value Units Method Reference Comment
Tfus351.KN/AKotula and Rabczuk, 1985Uncertainty assigned by TRC = 2. K; TRC
Tfus354.KN/ACocker, Cross, et al., 1953Uncertainty assigned by TRC = 4. K; TRC
Tfus355.15KN/ALuther and Riechel, 1950Uncertainty assigned by TRC = 0.5 K; TRC

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
64.1398.GCLei, Chankalal, et al., 2002Based on data from 323. to 473. K.; AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Method Reference Comment
20.355.2DSCCheon and Kim, 2007AC

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Henry's Law data

Go To: Top, Gas phase thermochemistry data, Phase change data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
1.6 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.

References

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]

Kruber and Oberkobusch, 1951
Kruber, O.; Oberkobusch, R., Chem. Ber., 1951, 84, 826. [all data]

Bailey, Bryant, et al., 1947
Bailey; Bryant; Hancock; Morrell; Smith, J.O., The ten dimethylnaphthalenes, their physical properties, molecular compounds, and ultra-violet spectra, J. Inst. Pet., 1947, 33, 503. [all data]

Kotula and Rabczuk, 1985
Kotula, I.; Rabczuk, A., DTA Investigation of the Solid-Liquid Equilibrium for Mehtyl Derivatives of Naphthalene with Some Nitroaromatics, J. Therm. Anal., 1985, 30, 195. [all data]

Cocker, Cross, et al., 1953
Cocker, W.; Cross, B.E.; Edward, D.S.; Jenkinson, D.S.; McCormick, J., J. Chem. Soc., 1953, 1953, 2355-62. [all data]

Luther and Riechel, 1950
Luther, H.; Riechel, C., The Raman Spectra of Polymethylnphthalenes, Z. Phys. Chem. (Leipzig), 1950, 195, 103. [all data]

Lei, Chankalal, et al., 2002
Lei, Ying Duan; Chankalal, Raymond; Chan, Anita; Wania, Frank, Supercooled Liquid Vapor Pressures of the Polycyclic Aromatic Hydrocarbons, J. Chem. Eng. Data, 2002, 47, 4, 801-806, https://doi.org/10.1021/je0155148 . [all data]

Cheon and Kim, 2007
Cheon, Yang-Ho; Kim, Kwang-Joo, Solid-Liquid Equilibria of Binary Mixtures of Dimethylnaphthalene Isomers, J. Chem. Eng. Data, 2007, 52, 4, 1390-1393, https://doi.org/10.1021/je700088n . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, References