n-Hexadecanoic acid

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Donald R. Burgess, Jr.

Quantity Value Units Method Reference Comment
Δfgas-730.0 ± 5.5kJ/molN/ALebedeva, 1964Value computed using ΔfHliquid° value of -848.4±2.2 kj/mol from Lebedeva, 1964 and ΔvapH° value of 118.4±5.0 kj/mol from n-alkanoic correlation.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-848.4 ± 2.2kJ/molCcbLebedeva, 1964Reanalyzed by Cox and Pilcher, 1970, Original value = -841.0 ± 1.9 kJ/mol; Hfusion =13.86±0.15 kcal/mol; ALS
Quantity Value Units Method Reference Comment
Δcliquid-9977.2 ± 1.6kJ/molCcbAdriaanse, Dekker, et al., 1965Hfusion=53.4kJ/mol; Corresponding Δfliquid = -892.2 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-10028.6 ± 1.9kJ/molCcbLebedeva, 1964Hfusion =13.86±0.15 kcal/mol; Corresponding Δfliquid = -840.82 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
Δcsolid-9977.6 ± 8.8kJ/molCcbSwain, Silbert, et al., 1964Corresponding Δfsolid = -892.0 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
solid,1 bar452.37J/mol*KN/AWirth, Droege, et al., 1956DH
solid,1 bar438.65J/mol*KN/AWard and Singleton, 1952Extrapolation below 90 K, 106.7 J/mol*K.; DH
solid,1 bar475.7J/mol*KN/AParks, Kelley, et al., 1929Extrapolation below 90 K, 146.4 J/mol*K. Revision of previous data.; DH
solid,1 bar543.5J/mol*KN/AParks and Kelley, 1925Extrapolation below 90 K, 214.2 J/mol*K.; DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
463.36298.15Schaake, van Miltenburg, et al., 1982T = 80 to 345 K.; DH
678.373.Pacor, 1967DH
460.66298.15Wirth, Droege, et al., 1956T = 15 to 302 K.; DH
448.298.Ward and Singleton, 1952T = 183 to 365 K. Three temperatures, each for solid and liquid and equations. C form.; DH
462.3292.5Parks and Kelley, 1925T = 88 to 293 K. Value is unsmoothed experimental datum.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
BS - Robert L. Brown and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tboil612.15KN/AKrafft, 1880Uncertainty assigned by TRC = 6. K; TRC
Quantity Value Units Method Reference Comment
Tfus335. ± 1.KAVGN/AAverage of 21 out of 22 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple335.66KN/ASchaake, van Miltenburg, et al., 1982, 2Uncertainty assigned by TRC = 0.02 K; TRC
Ttriple335.05KN/ASpizzichino, 1956Uncertainty assigned by TRC = 0.5 K; TRC
Quantity Value Units Method Reference Comment
Ptriple8.26596×10-8barN/ASpizzichino, 1956Uncertainty assigned by TRC = 3.9997×10-8 bar; TRC
Quantity Value Units Method Reference Comment
Tc785.22KN/AD'Souza and Teja, 1987Uncertainty assigned by TRC = 3. K; Ambrose's procedure; TRC
Quantity Value Units Method Reference Comment
Pc14.6841barN/AD'Souza and Teja, 1987Uncertainty assigned by TRC = 0.85 bar; Ambrose's procedure; TRC
Quantity Value Units Method Reference Comment
Δsub194. ± 11.kJ/molTPDCappa, Lovejoy, et al., 2008AC

Reduced pressure boiling point

Tboil (K) Pressure (bar) Reference Comment
544.70.133Aldrich Chemical Company Inc., 1990BS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
97.5455.AStephenson and Malanowski, 1987Based on data from 440. to 625. K.; AC
110.2 ± 2.0364.ME,TEde Kruif, Schaake, et al., 1982Based on data from 347. to 374. K.; AC
90.1475.ICramer, 1943AC

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
426.8 to 626.95.357283061.422-55.077Stull, 1947Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
134.273. to 303.TPTDChattopadhyay and Ziemann, 2005AC
154.294. to 316.TPTDChattopadhyay, Tobias, et al., 2001Experimental values based on the TPTD method are often inconsistent with values determined using other experimental methods; AC
154.4 ± 4.2326.MEDavies and Malpass, 1961Based on data from 320. to 333. K. See also Cox and Pilcher, 1970, 2 and Stephenson and Malanowski, 1987.; AC
154. ± 4.2319.64VDavies and Malpass, 1961, 2ALS

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Method Reference Comment
53.9335.4DSCGbabode, Negrier, et al., 2009AC
51.37332.7DSCZeng, Cao, et al., 2009AC
47.0336.5DSCMisra, Misra, et al., 2007AC
53.0334.7DSCMoreno, Cordobilla, et al., 2007AC
54.81335.7N/ADomalski and Hearing, 1996AC
54.935336.N/APacor, 1967DH
54.894335.73N/AWard and Singleton, 1952DH

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
163.5336.Pacor, 1967DH
163.5335.73Ward and Singleton, 1952DH

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
53.711335.66crystaline, IliquidSchaake, van Miltenburg, et al., 1982DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
160.02335.66crystaline, IliquidSchaake, van Miltenburg, et al., 1982DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Hydrogen + Palmitoleic acid = n-Hexadecanoic acid

By formula: H2 + C16H30O2 = C16H32O2

Quantity Value Units Method Reference Comment
Δr-125.1 ± 1.0kJ/molChydRogers, Hoyte, et al., 1978liquid phase; solvent: Hexane

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Lebedeva, 1964
Lebedeva, N.D., Heats of combustion of monocarboxylic acids, Russ. J. Phys. Chem. (Engl. Transl.), 1964, 38, 1435-1437. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Adriaanse, Dekker, et al., 1965
Adriaanse, N.; Dekker, H.; Coops, J., Heats of combustion of normal saturated fatty acids and their methyl esters, Rec. Trav. Chim. Pays/Bas, 1965, 84, 393-407. [all data]

Swain, Silbert, et al., 1964
Swain, H.A., Jr.; Silbert, L.S.; Miller, J.G., The heats of combustion of aliphatic long chain peroxyacids, t-butyl peroxyesters, and related acids and esters, J. Am. Chem. Soc., 1964, 86, 2562-2566. [all data]

Wirth, Droege, et al., 1956
Wirth, H.E.; Droege, J.W.; Wood, J.H., Low temperature heat capacity of palmitic acid and methyl palmitate, J. Phys. Chem., 1956, 60, 917-919. [all data]

Ward and Singleton, 1952
Ward, T.L.; Singleton, W.S., Physical properties of fatty acids. II. Some dilatometric and thermal properties of palmitic acid, J. Phys. Chem., 1952, 56, 696-698. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Parks and Kelley, 1925
Parks, G.S.; Kelley, K.K., Thermal data on organic compounds. II. The heat capacities of five organic compounds. The entropies and free energies of some homologous series of aliphatic compounds, J. Am. Chem. Soc., 1925, 47, 2089-2097. [all data]

Schaake, van Miltenburg, et al., 1982
Schaake, R.C.F.; van Miltenburg, J.C.; De Kruif, C.G., Thermodynamic properties of the normal alkanoic acids. II. Molar heat capacities of seven even-numbered normal alkanoic acids, J. Chem. Thermodynam., 1982, 14, 771-778. [all data]

Pacor, 1967
Pacor, P., Applicability of the DuPont 900 DTA apparatus in quantitative differential thermal analysis, Anal. Chim. Acta, 1967, 37, 200-208. [all data]

Krafft, 1880
Krafft, F., The production of laurinaldehyde c(12)h(24)o, myristinaldehyde c(14)h(28)o, palmitinaldehyde c(16)h(32)o, stearinaldehyde c(18)h(36)o: I investigation of aldehydes, Ber. Dtsch. Chem. Ges., 1880, 13, 1413-8. [all data]

Schaake, van Miltenburg, et al., 1982, 2
Schaake, R.C.F.; van Miltenburg, J.C.; De Kruif, C.G., Thermodynamic properties of the normal alkanoic acids. II. Molar heat capacities of seven even-numbered normal alkanoic acids., J. Chem. Thermodyn., 1982, 14, 771-8. [all data]

Spizzichino, 1956
Spizzichino, C., Contribution a l'etude des tensions de vapeur et des chaleurs de vaporisation des acides gras, esters methyliques et alcools gras a des pressions inferieures a 1 mm de mercure, J. des Recherches du C.N.R.S., 1956, 34, 1-24. [all data]

D'Souza and Teja, 1987
D'Souza, R.; Teja, A.S., The prediction of the vapor pressures of carboxylic acids, Chem. Eng. Commun., 1987, 61, 13. [all data]

Cappa, Lovejoy, et al., 2008
Cappa, Christopher D.; Lovejoy, Edward R.; Ravishankara, A.R., Evaporation Rates and Vapor Pressures of the Even-Numbered C 8 -C 18 Monocarboxylic Acids, J. Phys. Chem. A, 2008, 112, 17, 3959-3964, https://doi.org/10.1021/jp710586m . [all data]

Aldrich Chemical Company Inc., 1990
Aldrich Chemical Company Inc., Catalog Handbook of Fine Chemicals, Aldrich Chemical Company, Inc., Milwaukee WI, 1990, 1. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

de Kruif, Schaake, et al., 1982
de Kruif, C.G.; Schaake, R.C.F.; van Miltenburg, J.C.; van der Klauw, K.; Blok, J.G., Thermodynamic properties of the normal alkanoic acids III. Enthalpies of vaporization and vapour pressures of 13 normal alkanoic acids, The Journal of Chemical Thermodynamics, 1982, 14, 8, 791-798, https://doi.org/10.1016/0021-9614(82)90176-8 . [all data]

Cramer, 1943
Cramer, K.S.N., Chem. Zentr. II, 1943, 2234. [all data]

Stull, 1947
Stull, Daniel R., Vapor Pressure of Pure Substances. Organic and Inorganic Compounds, Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022 . [all data]

Chattopadhyay and Ziemann, 2005
Chattopadhyay, Sulekha; Ziemann, Paul J., Vapor Pressures of Substituted and Unsubstituted Monocarboxylic and Dicarboxylic Acids Measured Using an Improved Thermal Desorption Particle Beam Mass Spectrometry Method, Aerosol Science and Technology, 2005, 39, 11, 1085-1100, https://doi.org/10.1080/02786820500421547 . [all data]

Chattopadhyay, Tobias, et al., 2001
Chattopadhyay, Sulekha; Tobias, Herbert J.; Ziemann, Paul J., A Method for Measuring Vapor Pressures of Low-Volatility Organic Aerosol Compounds Using a Thermal Desorption Particle Beam Mass Spectrometer, Anal. Chem., 2001, 73, 16, 3797-3803, https://doi.org/10.1021/ac010304j . [all data]

Davies and Malpass, 1961
Davies, Mansel; Malpass, V.E., 212. Heats of sublimation of straight-chain monocarboxylic acids, J. Chem. Soc., 1961, 1048, https://doi.org/10.1039/jr9610001048 . [all data]

Cox and Pilcher, 1970, 2
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press Inc., London, 1970, 643. [all data]

Davies and Malpass, 1961, 2
Davies, M.; Malpass, V.E., Heats of sublimation of straight-chain monocarboxylic acids, J. Chem. Soc., 1961, 1048-10. [all data]

Gbabode, Negrier, et al., 2009
Gbabode, Gabin; Negrier, Philippe; Mondieig, Denise; Moreno, Evelyn; Calvet, Teresa; Cuevas-Diarte, Miquel Àngel, Fatty acids polymorphism and solid-state miscibility, Journal of Alloys and Compounds, 2009, 469, 1-2, 539-551, https://doi.org/10.1016/j.jallcom.2008.02.047 . [all data]

Zeng, Cao, et al., 2009
Zeng, J.L.; Cao, Z.; Yang, D.W.; Xu, F.; Sun, L.X.; Zhang, L.; Zhang, X.F., Phase diagram of palmitic acid-tetradecanol mixtures obtained by DSC experiments, J Therm Anal Calorim, 2009, 95, 2, 501-505, https://doi.org/10.1007/s10973-008-9274-x . [all data]

Misra, Misra, et al., 2007
Misra, A.K.; Misra, M.; Panpalia, G.M.; Dorle, A.K., Thermoanalytical and Microscopic Investigation of Interaction between Paracetamol and Fatty Acid Crystals, Journal of Macromolecular Science, Part A, 2007, 44, 7, 685-690, https://doi.org/10.1080/10601320701351177 . [all data]

Moreno, Cordobilla, et al., 2007
Moreno, Evelyn; Cordobilla, Raquel; Calvet, Teresa; Cuevas-Diarte, M.A.; Gbabode, Gabin; Negrier, Philippe; Mondieig, Denise; Oonk, Harry A.J., Polymorphism of even saturated carboxylic acids from n-decanoic to n-eicosanoic acid, New J. Chem., 2007, 31, 6, 947, https://doi.org/10.1039/b700551b . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Rogers, Hoyte, et al., 1978
Rogers, D.W.; Hoyte, O.P.A.; Ho, R.K.C., Heats of hydrogenation of large molecules. Part 2. Six unsaturated and polyunsaturated fatty acids, J. Chem. Soc. Faraday Trans. 1, 1978, 74, 46-52. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References