Pentane, 2,3,4-trimethyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-217.4 ± 1.7kJ/molCcbProsen and Rossini, 1945ALS
Quantity Value Units Method Reference Comment
gas427.2 ± 1.3J/mol*KN/APitzer K.S., 1941GT

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
233.50 ± 0.47373.15Hossenlopp I.A., 1981Please also see Pitzer K.S., 1941, Barrow G.M., 1951.; GT
246.46 ± 0.49398.15
248.11402.8
251.5 ± 2.5417.0
258.52 ± 0.52423.15
271.05 ± 0.54448.15
276.98463.6
283.03 ± 0.57473.15
293.98 ± 0.59498.15
303.34521.6
304.96 ± 0.61523.15

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
123.68200.Scott D.W., 1974Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, 2, Scott D.W., 1974]. This approach gives a good agreement with experimental data available for alkanes. However, large uncertainties could be expected at high temperatures.; GT
176.19273.15
191.6 ± 0.6298.15
192.72300.
247.69400.
294.43500.
334.30600.
369.03700.
398.74800.
424.68900.
447.271000.
467.351100.
484.511200.
502.081300.
514.631400.
527.181500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfliquid-255.2 ± 1.7kJ/molCcbProsen and Rossini, 1945ALS
Quantity Value Units Method Reference Comment
Δcliquid-5465.5 ± 1.6kJ/molCcbProsen and Rossini, 1945Corresponding Δfliquid = -255.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid329.32J/mol*KN/APitzer and Scott, 1941DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
247.32298.15Osborne and Ginnings, 1947T = 278 to 318 K.; DH
246.23293.79Pitzer and Scott, 1941T = 14 to 325 K. Value is unsmoothed experimental datum.; DH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Octane = Pentane, 2,3,4-trimethyl-

By formula: C8H18 = C8H18

Quantity Value Units Method Reference Comment
Δr-5.2 ± 1.3kJ/molCisoProsen and Rossini, 1945, 2liquid phase; Calculated from ΔHc

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Pitzer K.S., 1941
Pitzer K.S., The thermodynamics of branched-chain paraffins. The heat capacity, heat of fusion and vaporization and entropy of 2,3,4-trimethylpentane, J. Am. Chem. Soc., 1941, 63, 2419-2422. [all data]

Hossenlopp I.A., 1981
Hossenlopp I.A., Vapor heat capacities and enthalpies of vaporization of five alkane hydrocarbons, J. Chem. Thermodyn., 1981, 13, 415-421. [all data]

Barrow G.M., 1951
Barrow G.M., Experimental vapor heat capacities and heats of vaporization of seven octanes, J. Am. Chem. Soc., 1951, 73, 1824-1826. [all data]

Scott D.W., 1974
Scott D.W., Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]

Scott D.W., 1974, 2
Scott D.W., Correlation of the chemical thermodynamic properties of alkane hydrocarbons, J. Chem. Phys., 1974, 60, 3144-3165. [all data]

Pitzer and Scott, 1941
Pitzer, K.S.; Scott, D.W., The thermodynamics of branched-chain paraffins. The heat capacity, heat of fusion and vaporization, and entropy of 2,3,4-trimethylpentane, J. Am. Chem. Soc., 1941, 63, 2419-2422. [all data]

Osborne and Ginnings, 1947
Osborne, N.S.; Ginnings, D.C., Measurements of heat of vaporization and heat capacity of a number of hydrocarbons, J. Res. NBS, 1947, 39, 453-477. [all data]

Prosen and Rossini, 1945, 2
Prosen, E.J.; Rossini, F.D., Heats of isomerization of the 18 octanes, J. Res. NBS, 1945, 34, 163-174. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, References