Hexadecane
- Formula: C16H34
- Molecular weight: 226.4412
- IUPAC Standard InChIKey: DCAYPVUWAIABOU-UHFFFAOYSA-N
- CAS Registry Number: 544-76-3
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: n-Cetane; n-Hexadecane; Cetane
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -109.07 ± 0.48 | kcal/mol | Ccb | Fraser and Prosen, 1955 | ALS |
ΔfH°liquid | -109.02 ± 0.98 | kcal/mol | Ccb | Richardson and Parks, 1939 | Reanalyzed by Cox and Pilcher, 1970, Original value = -109.78 kcal/mol; see Richardson, 1939; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -2557.15 ± 0.42 | kcal/mol | Ccb | Fraser and Prosen, 1955 | Corresponding ΔfHºliquid = -109.02 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -2557.15 ± 0.97 | kcal/mol | Ccb | Richardson and Parks, 1939 | Reanalyzed by Cox and Pilcher, 1970, Original value = -2556.11 kcal/mol; see Richardson, 1939; Corresponding ΔfHºliquid = -109.02 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 140.10 | cal/mol*K | N/A | Finke, Gross, et al., 1954 | DH |
S°liquid | 149.8 | cal/mol*K | N/A | Parks, Moore, et al., 1949 | Extrapolation below 80 K, 116.6 J/mol*K.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
122.46 | 313.15 | Banipal, Garg, et al., 1991 | T = 313 to 373 K. p = 0.1 MPa.; DH |
119.44 | 298.15 | Trejo, Costas, et al., 1991 | DH |
118.82 | 298.15 | Lainez, Rodrigo, et al., 1989 | DH |
119.41 | 298.15 | Andreoli-Ball, Patterson, et al., 1988 | DH |
119.55 | 298.15 | Costas, Huu, et al., 1988 | DH |
119.55 | 298.15 | Perez-Casas, Aicart, et al., 1988 | DH |
119.41 | 298.15 | Tardajos, Aicart, et al., 1986 | DH |
118.48 | 298.15 | Wilhelm, Lainez, et al., 1986 | DH |
118.65 | 298.15 | Lainez, Roux-Desgranges, et al., 1985 | DH |
119.1 | 298. | Zaripov, 1982 | T = 298, 323, 363 K.; DH |
119.50 | 298.15 | Grolier, Inglese, et al., 1981 | DH |
119.9 | 298.15 | Diaz pena and Renuncio, 1974 | T = 300 to 324 K.; DH |
119. | 297.79 | Petit and TerMinassian, 1974 | T = 297 to 471 K. Value is unsmoothed experimental datum.; DH |
120.60 | 298.15 | Kalinowska and Woycicka, 1973 | DH |
115.9 | 311. | Gollis, Belenyessy, et al., 1962 | T = 100, 200, 300°F.; DH |
119.85 | 298.15 | Finke, Gross, et al., 1954 | T = 12 to 320 K.; DH |
120.5 | 298.15 | Parks, Moore, et al., 1949 | T = 80 to 300 K.; DH |
Phase change data
Go To: Top, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 554. ± 10. | K | AVG | N/A | Average of 10 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 291. ± 1. | K | AVG | N/A | Average of 52 out of 54 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 291.3 ± 0.1 | K | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 722. ± 4. | K | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Pc | 14. ± 2. | atm | N/A | Ambrose and Tsonopoulos, 1995 | |
Pc | 13.83 | atm | N/A | Rosenthal and Teja, 1989 | Uncertainty assigned by TRC = 0.49 atm; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Vc | 1.034 | l/mol | N/A | Ambrose and Tsonopoulos, 1995 | |
Quantity | Value | Units | Method | Reference | Comment |
ρc | 1. ± 0.2 | mol/l | N/A | Ambrose and Tsonopoulos, 1995 | |
ρc | 0.967 | mol/l | N/A | Anselme, Gude, et al., 1990 | Uncertainty assigned by TRC = 0.03 mol/l; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 19.4 ± 0.1 | kcal/mol | AVG | N/A | Average of 9 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 32.29 | kcal/mol | B | Morawetz, 1972 | AC |
Enthalpy of vaporization
ΔvapH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
16.4 | 408. | N/A | Morgan and Kobayashi, 1994 | Based on data from 393. to 583. K.; AC |
14.3 | 520. | N/A | Lee, Dempsey, et al., 1992 | Based on data from 505. to 589. K.; AC |
17.9 | 338. | A | Stephenson and Malanowski, 1987 | Based on data from 323. to 423. K.; AC |
14.7 | 482. | A,MM | Stephenson and Malanowski, 1987 | Based on data from 467. to 563. K. See also Camin, Forziati, et al., 1954.; AC |
16.0 | 343. | GC | Nováková and Novák, 1977 | AC |
15.8 | 353. | GC | Nováková and Novák, 1977 | AC |
15.7 | 363. | GC | Nováková and Novák, 1977 | AC |
15.5 | 373. | GC | Nováková and Novák, 1977 | AC |
15.3 | 383. | GC | Nováková and Novák, 1977 | AC |
19.2 | 300. | ME | Bradley and Shellard, 1949 | Based on data from 293. to 308. K.; AC |
22.3 | 311. | ME | Parks and Moore, 1949 | Based on data from 299. to 324. K.; AC |
15.7 | 455. | ME | Ubbelohde, 1938 | Based on data from 442. to 469. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (atm)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
463.20 to 559.9 | 4.16741 | 1845.672 | -117.054 | Camin, Forziati, et al., 1954 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
32.24 | 291. | B | Bondi, 1963 | AC |
19.2 ± 0.6 | 288. | V | Bradley and Shellard, 1949, 2 | hfusion=10.93±1.6 kcal/mol; ALS |
20. ± 2. | 288. to 290. | ME | Bradley and Shellard, 1949, 2 | AC |
Enthalpy of fusion
ΔfusH (kcal/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
11.364 | 292.1 | N/A | Claudy and Letoffe, 1991 | DH |
12.753 | 291.34 | N/A | Finke, Gross, et al., 1954 | DH |
12.7 | 290.7 | DSC | Mondieig, Rajabalee, et al., 2004 | AC |
12.30 | 291.1 | N/A | Domalski and Hearing, 1996 | AC |
12.319 | 291.1 | N/A | Parks, Moore, et al., 1949 | DH |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
43.774 | 291.34 | Finke, Gross, et al., 1954 | DH |
42.33 | 291.1 | Parks, Moore, et al., 1949 | DH |
Entropy of fusion
ΔfusS (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
43.769 | 291.3 | Domalski and Hearing, 1996 | CAL |
42.254 | 291.1 |
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Fraser and Prosen, 1955
Fraser, F.M.; Prosen, E.J.,
Heats of combustion of liquid n-hexadecane, 1-hexadecene, n-decylbenzene, n-decylcyclohexane, n-decylcyclopentane, and the variation of heat of combustion with chain length,
J. Res. NBS, 1955, 55, 329-333. [all data]
Richardson and Parks, 1939
Richardson, J.W.; Parks, G.S.,
Thermal data on organic compounds. XIX. Modern combustion data for some non-volatile compounds containing carbon, hydrogen and oxygen,
J. Am. Chem. Soc., 1939, 61, 3543-3546. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Richardson, 1939
Richardson, J.W.,
Precise determination of the heats of combustion of some representative organic compounds, Ph.D. Thesis for Standford University, 1939, 1-122. [all data]
Finke, Gross, et al., 1954
Finke, H.L.; Gross, M.E.; Waddington, G.; Huffman, H.M.,
Low-temperature thermal data for the nine normal paraffin hydrocarbons from octane to hexadecane,
J. Am. Chem. Soc., 1954, 76, 333-341. [all data]
Parks, Moore, et al., 1949
Parks, G.S.; Moore, G.E.; Renquist, M.L.; Naylor, B.F.; McClaine, L.A.; Fujii, P.S.; Hatton, J.A.,
Thermal data on organic compounds. XXV. Some heat capacity, entropy and free energy data for nine hydrocarbons of high molecular weight,
J. Am. Chem. Soc., 1949, 71, 3386-3389. [all data]
Banipal, Garg, et al., 1991
Banipal, T.S.; Garg, S.K.; Ahluwalia, J.C.,
Heat capacities and densities of liquid n-octane, n-nonane, n-decane, and n-hexadecane at temperatures from 318.15 to 373.15 K and at pressures up to 10 MPa,
J. Chem. Thermodynam., 1991, 23, 923-931. [all data]
Trejo, Costas, et al., 1991
Trejo, L.M.; Costas, M.; Patterson, D.,
Excess heat capacity of organic mixtures, Internat. DATA Series,
Selected Data Mixt., 1991, Ser. [all data]
Lainez, Rodrigo, et al., 1989
Lainez, A.; Rodrigo, M.M.; Wilhelm, E.; Grolier, J.-P.E.,
Excess volumes and excess heaat capacitiies of some mixtures with trans,trans,cis-1,5,9-cyclododecatriene at 298.15K,
J. Chem. Eng. Data, 1989, 34, 332-335. [all data]
Andreoli-Ball, Patterson, et al., 1988
Andreoli-Ball, L.; Patterson, D.; Costas, M.; Caceres-Alonso, M.,
Heat capacity and corresponding states in alkan-1-ol-n-alkane systems, J. Chem. Soc.,
Faraday Trans. 1, 1988, 84(11), 3991-4012. [all data]
Costas, Huu, et al., 1988
Costas, M.; Huu, V.T.; Patterson, D.; Caceres-Alonso, M.; Tardajos, G.; Aicart, E.,
Liquid structure and second-order mixing functions for l-chloronaphthalene with linear and branched alkanes, J. Chem. Soc.,
Faraday Trans., 1988, 1 84(5), 1603-1616. [all data]
Perez-Casas, Aicart, et al., 1988
Perez-Casas, S.; Aicart, E.; Trojo, L.M.; Costas, M.,
Excess heat capacity. Chlorobenzene-2,2,4,4,6,8,8-heptamethylnonane, Int. Data Ser.,
Sel. Data Mixtures, 1988, (2)A, 123. [all data]
Tardajos, Aicart, et al., 1986
Tardajos, G.; Aicart, E.; Costas, M.; Patterson, D.,
Liquid structure and second-order mixing functions for benzene, toluene, and p-xylene with n-alkanes, J. Chem. Soc.,
Faraday Trans., 1986, 1 82, 2977-2987. [all data]
Wilhelm, Lainez, et al., 1986
Wilhelm, E.; Lainez, A.; Roux, A.H.; Grolier, J.-P.E.,
Excess-molar volumes and heat capacities of (1,2,4-trichlorobenzene + an n-alkane) and (1-chloronaphthalene + an n-alkane),
Thermochim. Acta, 1986, 105, 101-110. [all data]
Lainez, Roux-Desgranges, et al., 1985
Lainez, A.; Roux-Desgranges, G.; Grolier, J.-P.E.; Wilhelm, E.,
Mixtures of alkanes with polar molecules showing integral rotation: an unusual composition dependence of CpE of 1,2-dichloroethane + an n-alkane,
Fluid Phase Equilib., 1985, 20, 47-56. [all data]
Zaripov, 1982
Zaripov, Z.I.,
Experimental study of the isobaric heat capacity of liquid organic compounds with molecular weights of up to 4000 a.e.m., 1982, Teplomassoobmen Teplofiz. [all data]
Grolier, Inglese, et al., 1981
Grolier, J.P.E.; Inglese, A.; Roux, A.H.; Wilhelm, E.,
Thermodynamics of (1-chloronaphthalene + n-alkane): excess enthalpies, excess volumes and excess heat capacities,
Ber. Bunsenges. Phys. Chem., 1981, 85, 768-772. [all data]
Diaz pena and Renuncio, 1974
Diaz pena, M.D.; Renuncio, J.A.R.,
Construccion de un calorimetro adiabatico. Capacidad calorifica de mezclas n-hexano + n-hexadecano,
An. Quim., 1974, 70, 113-120. [all data]
Petit and TerMinassian, 1974
Petit, J.C.; TerMinassian, L.,
Measurements of (dV/dT)p, (dV/dP)T, and (dH/dT)p by flux calorimetry,
J. Chem. Thermodynam., 1974, 6, 1139-1152. [all data]
Kalinowska and Woycicka, 1973
Kalinowska, B.; Woycicka, M.,
Excess heat capacities of dilute solutions of n-hexanol in n-alkanes,
Bull. Aca. Pol. Sci. (Ser. Sci. Chim.), 1973, 21(11), 845-848. [all data]
Gollis, Belenyessy, et al., 1962
Gollis, M.H.; Belenyessy, L.I.; Gudzinowicz, B.J.; Koch, S.D.; Smith, J.O.; Wineman, R.J.,
Evaluations of pure hydrocarbons as Jet Fuels,
J. Chem. Eng. Data, 1962, 7, 311-316. [all data]
Ambrose and Tsonopoulos, 1995
Ambrose, D.; Tsonopoulos, C.,
Vapor-Liquid Critical Properties of Elements and Compounds. 2. Normal Alkenes,
J. Chem. Eng. Data, 1995, 40, 531-546. [all data]
Rosenthal and Teja, 1989
Rosenthal, D.J.; Teja, A.S.,
The Critical Properties of n-Alkanes Using a Low-Residence Time Flow Apparatus,
AIChE J., 1989, 35, 1829. [all data]
Anselme, Gude, et al., 1990
Anselme, M.J.; Gude, M.; Teja, A.S.,
The Critical Temperatures and Densities of the n-Alkanes from Pentane to Octadecane,
Fluid Phase Equilib., 1990, 57, 317-26. [all data]
Morawetz, 1972
Morawetz, Ernst,
Correlation of sublimation enthalpies at 298.15 K with molecular structure for planar aromatic hydrocarbons,
The Journal of Chemical Thermodynamics, 1972, 4, 3, 461-467, https://doi.org/10.1016/0021-9614(72)90030-4
. [all data]
Morgan and Kobayashi, 1994
Morgan, David L.; Kobayashi, Riki,
Direct vapor pressure measurements of ten n-alkanes m the 10-C28 range,
Fluid Phase Equilibria, 1994, 97, 211-242, https://doi.org/10.1016/0378-3812(94)85017-8
. [all data]
Lee, Dempsey, et al., 1992
Lee, Chang Ha; Dempsey, Dennis M.; Mohamed, Rahoma S.; Holder, Gerald D.,
Vapor-liquid equilibria in the systems of n-decane/tetralin, n-hexadecane/tetralin, n-decane/1-methylnaphthalene, and 1-methylnaphthalene/tetralin,
J. Chem. Eng. Data, 1992, 37, 2, 183-186, https://doi.org/10.1021/je00006a012
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Camin, Forziati, et al., 1954
Camin, David L.; Forziati, Alphonse F.; Rossini, Frederick D.,
Physical Properties of n-Hexadecane, n-Decylcyclopentane, n-Decylcyclohexane, 1-Hexadecene and n-Decylbenzene,
J. Phys. Chem., 1954, 58, 5, 440-442, https://doi.org/10.1021/j150515a015
. [all data]
Nováková and Novák, 1977
Nováková, N.; Novák, J.,
Measurement of heats of vaporization by means of a gas chromatograph,
Journal of Chromatography A, 1977, 135, 1, 13-24, https://doi.org/10.1016/S0021-9673(00)86297-4
. [all data]
Bradley and Shellard, 1949
Bradley, R.S.; Shellard, A.D.,
The theory of molecular distillation and its experimental verification,
Trans. Faraday Soc., 1949, 45, 501, https://doi.org/10.1039/tf9494500501
. [all data]
Parks and Moore, 1949
Parks, George S.; Moore, George E.,
Vapor Pressure and Other Thermodynamic Data for n-Hexadecane and n-Dodecylcyclohexane near Room Temperature,
J. Chem. Phys., 1949, 17, 11, 1151, https://doi.org/10.1063/1.1747130
. [all data]
Ubbelohde, 1938
Ubbelohde, A.R.,
Structure and thermodynamic properties of long-chain compounds,
Trans. Faraday Soc., 1938, 34, 282, https://doi.org/10.1039/tf9383400282
. [all data]
Bondi, 1963
Bondi, A.,
Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments.,
J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027
. [all data]
Bradley and Shellard, 1949, 2
Bradley, R.S.; Shellard, A.D.,
The rate of evaporation of droplets. III. Vapour pressures and rates of evaporation of straight-chain paraffin hydrocarbons,
Proc. Roy. Soc. London A, 1949, 198, 239-251. [all data]
Claudy and Letoffe, 1991
Claudy, P.; Letoffe, J.M.,
Phase transitions in even n-alkanes CnH2n+2, n = 16-28. Characterization by differential calorimetric analysis and by thermooptical analysis. Effect of deuteration,
Calorim. Anal. Therm., 1991, 22, 281-290. [all data]
Mondieig, Rajabalee, et al., 2004
Mondieig, D.; Rajabalee, F.; Metivaud, V.; Oonk, H.A.J.; Cuevas-Diarte, M.A.,
n -Alkane Binary Molecular Alloys,
Chem. Mater., 2004, 16, 5, 786-798, https://doi.org/10.1021/cm031169p
. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid Pc Critical pressure S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature Vc Critical volume ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions ρc Critical density - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.