Formaldehyde

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
B - John E. Bartmess
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

CH2OH+ + Formaldehyde = (CH2OH+ • Formaldehyde)

By formula: CH3O+ + CH2O = (CH3O+ • CH2O)

Bond type: Hydrogen bonds of the type OH-O between organics

Quantity Value Units Method Reference Comment
Δr27.7kcal/molICRLarson and McMahon, 1982gas phase; switching reaction(H3O+)H2O, Entropy change calculated or estimated; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Δr29.5kcal/molFAFehsenfeld, Dotan, et al., 1978gas phase; From thermochemical cycle,switching reaction(H3O+)H2O; Lias, Liebman, et al., 1984, Meot-Ner (Mautner), 1992; M
Δr27.7kcal/molICRLarson, Clair, et al., 1982gas phase; From thermochemical cycle,switching reaction(H2O/H2CO), Entropy change calculated or estimated; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr26.5cal/mol*KN/ALarson and McMahon, 1982gas phase; switching reaction(H3O+)H2O, Entropy change calculated or estimated; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Δr27.5cal/mol*KFAFehsenfeld, Dotan, et al., 1978gas phase; From thermochemical cycle,switching reaction(H3O+)H2O; Lias, Liebman, et al., 1984, Meot-Ner (Mautner), 1992; M
Δr26.5cal/mol*KN/ALarson, Clair, et al., 1982gas phase; From thermochemical cycle,switching reaction(H2O/H2CO), Entropy change calculated or estimated; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984; M
Quantity Value Units Method Reference Comment
Δr19.8kcal/molICRLarson and McMahon, 1982gas phase; switching reaction(H3O+)H2O, Entropy change calculated or estimated; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984, Keesee and Castleman, 1986; M
Δr19.8kcal/molICRLarson, Clair, et al., 1982gas phase; From thermochemical cycle,switching reaction(H2O/H2CO), Entropy change calculated or estimated; Cunningham, Payzant, et al., 1972, Lias, Liebman, et al., 1984; M

Lithium ion (1+) + Formaldehyde = (Lithium ion (1+) • Formaldehyde)

By formula: Li+ + CH2O = (Li+ • CH2O)

Quantity Value Units Method Reference Comment
Δr36.0kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Δr36.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Quantity Value Units Method Reference Comment
Δr28.2kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M

(CH3O- • 4294967295Formaldehyde) + Formaldehyde = CH3O-

By formula: (CH3O- • 4294967295CH2O) + CH2O = CH3O-

Quantity Value Units Method Reference Comment
Δr39.90 ± 0.51kcal/molN/ANee, Osterwalder, et al., 2006gas phase; B
Δr40.8 ± 1.1kcal/molTherOsborn, Leahy, et al., 1998gas phase; B
Δr41.8 ± 2.2kcal/molTherBartmess, Scott, et al., 1979gas phase; The acidity is 1.2 kcal/mol stronger than that from the D-EA cycle, due to the multi-compound fit for the acidity scale.; value altered from reference due to change in acidity scale; B

CHO- + Hydrogen cation = Formaldehyde

By formula: CHO- + H+ = CH2O

Quantity Value Units Method Reference Comment
Δr394.52 ± 0.23kcal/molD-EAMurray, Miller, et al., 1986gas phase; B
Quantity Value Units Method Reference Comment
Δr386.65 ± 0.40kcal/molH-TSMurray, Miller, et al., 1986gas phase; B
Δr394.0 ± 4.5kcal/molIMRBKarpas and Klein, 1975gas phase; B

CH2N+ + Formaldehyde = (CH2N+ • Formaldehyde)

By formula: CH2N+ + CH2O = (CH2N+ • CH2O)

Bond type: Hydrogen bonds of the type NH+-O between organics

Quantity Value Units Method Reference Comment
Δr21.8kcal/molFATanaka, Mackay, et al., 1978gas phase; switching reaction(HCNH+)HCN; Meot-Ner (Mautner), 1978; M

(dimethylamino)methanol = Dimethylamine + Formaldehyde

By formula: C3H9NO = C2H7N + CH2O

Quantity Value Units Method Reference Comment
Δr30.2 ± 0.2kcal/molCmRogers and Rapiejko, 1974liquid phase; Heat of formation derived by 77PED/RYL; ALS

Methylal + Water = Formaldehyde + 2Methyl Alcohol

By formula: C3H8O2 + H2O = CH2O + 2CH4O

Quantity Value Units Method Reference Comment
Δr18.45 ± 0.12kcal/molCmBirley and Skinner, 1970liquid phase; Heat of hydrolysis; ALS

Formaldehyde + Urea, N,N-dimethyl- = Urea, 3-(hydroxymethyl)-1,1-dimethyl-

By formula: CH2O + C3H8N2O = C4H10N2O2

Quantity Value Units Method Reference Comment
Δr-4.8 ± 0.2kcal/molKinPerepelkova, Igranova, et al., 1981liquid phase; solvent: Phosphate buffer; ALS

2Dimethylamine + Formaldehyde = Methanediamine, N,N,N',N'-tetramethyl- + Water

By formula: 2C2H7N + CH2O = C5H14N2 + H2O

Quantity Value Units Method Reference Comment
Δr-45.6 ± 0.6kcal/molCmRogers and Rapiejko, 1974gas phase; ALS

(Iron ion (1+) • 2Formaldehyde) + Formaldehyde = (Iron ion (1+) • 3Formaldehyde)

By formula: (Fe+ • 2CH2O) + CH2O = (Fe+ • 3CH2O)

Quantity Value Units Method Reference Comment
Δr18.2 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD

(Iron ion (1+) • 3Formaldehyde) + Formaldehyde = (Iron ion (1+) • 4Formaldehyde)

By formula: (Fe+ • 3CH2O) + CH2O = (Fe+ • 4CH2O)

Quantity Value Units Method Reference Comment
Δr12.0 ± 1.7kcal/molCIDTRodgers and Armentrout, 2000RCD

(Iron ion (1+) • Formaldehyde) + Formaldehyde = (Iron ion (1+) • 2Formaldehyde)

By formula: (Fe+ • CH2O) + CH2O = (Fe+ • 2CH2O)

Quantity Value Units Method Reference Comment
Δr39.2 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD

Dimethylamine + Formaldehyde = (dimethylamino)methanol

By formula: C2H7N + CH2O = C3H9NO

Quantity Value Units Method Reference Comment
Δr-30.2 ± 0.2kcal/molCmRogers and Rapiejko, 1974gas phase; ALS

Hydrogen + Carbon monoxide = Formaldehyde

By formula: H2 + CO = CH2O

Quantity Value Units Method Reference Comment
Δr-2.90kcal/molEqkNewton and Dodge, 1933gas phase; ALS

Iron ion (1+) + Formaldehyde = (Iron ion (1+) • Formaldehyde)

By formula: Fe+ + CH2O = (Fe+ • CH2O)

Quantity Value Units Method Reference Comment
Δr33.0 ± 1.7kcal/molCIDTRodgers and Armentrout, 2000RCD

Aluminum ion (1+) + Formaldehyde = (Aluminum ion (1+) • Formaldehyde)

By formula: Al+ + CH2O = (Al+ • CH2O)

Quantity Value Units Method Reference Comment
Δr27.5 ± 2.4kcal/molEqGBouchard, Brenner, et al., 1997RCD

1,3,5-Trioxane = 3Formaldehyde

By formula: C3H6O3 = 3CH2O

Quantity Value Units Method Reference Comment
Δr46.37 ± 0.60kcal/molEqkBusfield and Merigold, 1969solid phase; ALS

3Formaldehyde = 1,3,5-Trioxane

By formula: 3CH2O = C3H6O3

Quantity Value Units Method Reference Comment
Δr-33.27 ± 0.50kcal/molEqkBusfield and Merigold, 1969gas phase; ALS

Mass spectrum (electron ionization)

Go To: Top, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin H.M.B.BALLSCHMIETER NAT. FOOD RES. INST., PRETORIA, S AFRIC
NIST MS number 37883

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Reaction thermochemistry data, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Larson and McMahon, 1982
Larson, J.W.; McMahon, T.B., Formation, Thermochemistry, and Relative Stabilities of Proton - Bound dimers of Oxygen n - Donor Bases from Ion Cyclotron Resonance Solvent - Exchange Equilibria Measurements, J. Am. Chem. Soc., 1982, 104, 23, 6255, https://doi.org/10.1021/ja00387a016 . [all data]

Cunningham, Payzant, et al., 1972
Cunningham, A.J.; Payzant, J.D.; Kebarle, P., A Kinetic Study of the Proton Hydrate H+(H2O)n Equilibria in the Gas Phase, J. Am. Chem. Soc., 1972, 94, 22, 7627, https://doi.org/10.1021/ja00777a003 . [all data]

Lias, Liebman, et al., 1984
Lias, S.G.; Liebman, J.F.; Levin, R.D., Evaluated gas phase basicities and proton affinities of molecules heats of formation of protonated molecules, J. Phys. Chem. Ref. Data, 1984, 13, 695. [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Fehsenfeld, Dotan, et al., 1978
Fehsenfeld, F.C.; Dotan, I.; Albritton, D.L.; Howard, C.J.; Ferguson, E.E., Stratospheric Positive Ion Chemistry of Formaldehyde and Methanol, J. Geophys. Res., 1978, 83, C3, 1333, https://doi.org/10.1029/JC083iC03p01333 . [all data]

Meot-Ner (Mautner), 1992
Meot-Ner (Mautner), M., Intermolecular Forces in Organic Clusters, J. Am. Chem. Soc., 1992, 114, 9, 3312, https://doi.org/10.1021/ja00035a024 . [all data]

Larson, Clair, et al., 1982
Larson, J.W.; Clair, R.L.; McMahon, T.B., Bimolecular Production of Proton Bound Dimers in the Gas Phase. A Low Pressure Ion Cyclotron Resonance Technique for Examination of Solvent Exchange Equilibria and Determination of Single Molecule Solvation Energetics, Can. J. Chem., 1982, 60, 4, 542, https://doi.org/10.1139/v82-079 . [all data]

Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L., Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids, J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Nee, Osterwalder, et al., 2006
Nee, M.J.; Osterwalder, A.; Zhou, J.; Neumark, D.M., Slow electron velocity-map imaging photoelectron spectra of the methoxide anion, J. Chem. Phys., 2006, 125, 1, 014306, https://doi.org/10.1063/1.2212411 . [all data]

Osborn, Leahy, et al., 1998
Osborn, D.L.; Leahy, D.J.; Kim, E.H.; deBeer, E.; Neumark, D.M., Photoelectron spectroscopy of CH3O- and CD3O-, Chem. Phys. Lett., 1998, 292, 4-6, 651-655, https://doi.org/10.1016/S0009-2614(98)00717-9 . [all data]

Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr., The gas phase acidity scale from methanol to phenol, J. Am. Chem. Soc., 1979, 101, 6047. [all data]

Murray, Miller, et al., 1986
Murray, K.K.; Miller, T.M.; Leopold, D.G.; Lineberger, W.C., Laser photoelectron spectroscopy of the Formylf anion, J. Chem. Phys., 1986, 84, 2520. [all data]

Karpas and Klein, 1975
Karpas, Z.; Klein, F.S., Negative ion-molecule reactions in a mixture of ammonia-formaldehyde - an ICR mass spectrometry study, Int. J. Mass Spectrom. Ion Phys., 1975, 18, 65. [all data]

Tanaka, Mackay, et al., 1978
Tanaka, K.; Mackay, G.I.; Bohme, D.K., Rate and Equilibrium Constant Measurements for Gas-Phase Proton-Transfer Reactions Involving H2O, H2S, HCN, and H2CO, Can. J. Chem., 1978, 56, 2, 193, https://doi.org/10.1139/v78-031 . [all data]

Meot-Ner (Mautner), 1978
Meot-Ner (Mautner), M., Solvation of the Proton by HCN and CH3CN. Condensation of HCN with Ions in the Gas Phase., J. Am. Chem. Soc., 1978, 100, 15, 4694, https://doi.org/10.1021/ja00483a012 . [all data]

Rogers and Rapiejko, 1974
Rogers, F.E.; Rapiejko, R.J., Thermochemistry of carbonyl addition reactions. II. Enthalpy of addition of dimethylamine to formaldehyde, J. Phys. Chem., 1974, 78, 599-603. [all data]

Birley and Skinner, 1970
Birley, G.I.; Skinner, H.A., Enthalpies of hydrolysis of dimethoxymethane and 1,1-dimethoxyethane, Trans. Faraday Soc., 1970, 66, 791-793. [all data]

Perepelkova, Igranova, et al., 1981
Perepelkova, T.I.; Igranova, E.G.; Moiseev, V.D.; Demchenko, L.Ya.; Zhuravleva, I.I., Calorimetric study of the methylolation of 1,1-dimethylurea, Khim. Promst. Ser. Proizvod. Pererab. Plastmass Sint. Smol, 1981, 15-18. [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Newton and Dodge, 1933
Newton, R.H.; Dodge, B.F., The equilibrium between carbon monoxide, hydrogen, formaldehyde and methanol. I. The reactions CO + H2 = HCOH and H2 + HCOH = CH3OH, J. Am. Chem. Soc., 1933, 55, 4747-4759. [all data]

Bouchard, Brenner, et al., 1997
Bouchard, F.; Brenner, V.; Carra, C.; Hepburn, J.W.; Koyanagi, G.K.; McMahon, T.B.; Ohanessian, G.; Peschke, M., Energetics and Structure of Complexes of Al+ with Small Organic Molecules in the Gas Phase, J. Phys. Chem. A, 1997, 101, 33, 5885, https://doi.org/10.1021/jp9703465 . [all data]

Busfield and Merigold, 1969
Busfield, W.K.; Merigold, D., The gas-phase equilibrium between trioxan and formaldehyde: The standard enthalpy and entropy of the trimerisation of formaldehyde, J. Chem. Soc. A, 1969, 19, 2975-2977. [all data]


Notes

Go To: Top, Reaction thermochemistry data, Mass spectrum (electron ionization), References