Formaldehyde
- Formula: CH2O
- Molecular weight: 30.0260
- IUPAC Standard InChIKey: WSFSSNUMVMOOMR-UHFFFAOYSA-N
- CAS Registry Number: 50-00-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Methanal; BFV; Fannoform; Formaldehyde, gas; Formalin; Formalith; Formic aldehyde; Formol; Fyde; Lysoform; Methyl aldehyde; Methylene oxide; Morbicid; Oxomethane; Oxymethylene; Paraform; Superlysoform; Karsan; Methaldehyde; Aldehyde formique; Aldeide formica; Formaldehyd; Formalin-loesungen; Formalina; Formaline; NCI-C02799; Oplossingen; Aldehyd mravenci; Formalin 40; Rcra waste number U122; UN 1198; UN 2209; H2CO; Durine; Hercules 37M6-8; CH2O; NSC 298885; Fordor
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
- NIST / TRC Web Thermo Tables, "lite" edition (thermophysical and thermochemical data)
- NIST / TRC Web Thermo Tables, professional edition (thermophysical and thermochemical data)
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -27.701 | kcal/mol | Review | Chase, 1998 | Data last reviewed in March, 1961 |
ΔfH°gas | -25.95 ± 0.11 | kcal/mol | Cm | Fletcher and Pilcher, 1970 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°gas | -136.42 ± 0.10 | kcal/mol | Cm | Fletcher and Pilcher, 1970 | Corresponding ΔfHºgas = -25.95 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°gas | -134.1 | kcal/mol | Ccb | Wartenberg and Lerner-Steinberg, 1925 | Gas phase; Corresponding ΔfHºgas = -28.3 kcal/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 52.330 | cal/mol*K | Review | Chase, 1998 | Data last reviewed in March, 1961 |
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
7.949 | 50. | Thermodynamics Research Center, 1997 | p=1 bar. Recommended entropies and heat capacities are in good agreement with other statistically calculated values [ Thompson, 1941, Pillai M.G.K., 1961, Gurvich, Veyts, et al., 1989]. Please also see Chao J., 1980, Chao J., 1986.; GT |
7.949 | 100. | ||
7.954 | 150. | ||
8.007 | 200. | ||
8.293 | 273.15 | ||
8.458 ± 0.005 | 298.15 | ||
8.470 | 300. | ||
9.379 | 400. | ||
10.45 | 500. | ||
11.52 | 600. | ||
12.50 | 700. | ||
13.37 | 800. | ||
14.14 | 900. | ||
14.81 | 1000. | ||
15.38 | 1100. | ||
15.88 | 1200. | ||
16.31 | 1300. | ||
16.68 | 1400. | ||
17.01 | 1500. | ||
17.64 | 1750. | ||
18.09 | 2000. | ||
18.42 | 2250. | ||
18.67 | 2500. | ||
18.86 | 2750. | ||
19.02 | 3000. |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (cal/mol*K)
H° = standard enthalpy (kcal/mol)
S° = standard entropy (cal/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1200. | 1200. to 6000. |
---|---|---|
A | 1.241341 | 17.05370 |
B | 22.28310 | 1.475740 |
C | -10.72050 | -0.284677 |
D | 1.883910 | 0.019016 |
E | 0.131734 | -3.725902 |
F | -28.52751 | -40.78219 |
G | 48.39061 | 62.69551 |
H | -27.70010 | -27.70010 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in March, 1961 | Data last reviewed in March, 1961 |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compiled by: Coblentz Society, Inc.
- GAS (HEATING PARAFORMALDEHYDE; CONCENTRATION UNKNOWN); PERKIN-ELMER 297; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
- SOLUTION (UNKNOWN CONCENTRATION IN CCl4) VS. CCl4; PERKIN-ELMER 297; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | H.M.B.BALLSCHMIETER NAT. FOOD RES. INST., PRETORIA, S AFRIC |
NIST MS number | 37883 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Packed | Porapack Q | 200. | 284. | Goebel, 1982 | N2 |
Packed | SE-30 | 150. | 229. | Haken, Nguyen, et al., 1979 | Celatom AW silanized; Column length: 3.7 m |
Packed | Apiezon L | 160. | 249. | Bogoslovsky, Anvaer, et al., 1978 | Celite 545 |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | OV-101 | 273. | Zenkevich, 2005 | 25. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | SPB-1 | 247. | Flanagan, Streete, et al., 1997 | 60. m/0.53 mm/5. μm, He; Program: 40C(6min) => 5C/min => 80C => 10C/min => 200C |
Capillary | SPB-1 | 247. | Strete, Ruprah, et al., 1992 | 60. m/0.53 mm/5.0 μm, Helium; Program: 40 0C (6 min) 5 0C/min -> 80 0C 10 0C/min -> 200 0C |
References
Go To: Top, Gas phase thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Fletcher and Pilcher, 1970
Fletcher, R.A.; Pilcher, G.,
Measurements of heats of combustion by flame calorimetry,
Trans. Faraday Soc., 1970, 66, 794-799. [all data]
Wartenberg and Lerner-Steinberg, 1925
Wartenberg, H.; Lerner-Steinberg,
Heat of formation of formaldehyde,
Z. Angew. Chem., 1925, 38, 591-592. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Thompson, 1941
Thompson, H.W.,
Thermodynamic functions and equilibria of formaldehyde, deuteroformaldehyde, phosgene and thiophosgene,
Trans. Faraday Soc., 1941, 37, 251-260. [all data]
Pillai M.G.K., 1961
Pillai M.G.K.,
Potential energy constants, rotational distortion constants, and calculated thermodynamic properties for some planar XYZ2 molecules,
J. Mol. Spectrosc., 1961, 6, 465-471. [all data]
Gurvich, Veyts, et al., 1989
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.,
Thermodynamic Properties of Individual Substances, 4th ed.; Vols. 1 and 2, Hemisphere, New York, 1989. [all data]
Chao J., 1980
Chao J.,
Perfect gas thermodynamic properties of methanal, ethanal and their deuterated species,
Thermochim. Acta, 1980, 41, 41-54. [all data]
Chao J., 1986
Chao J.,
Thermodynamic properties of key organic oxygen compounds in the carbon range C1 to C4. Part 2. Ideal gas properties,
J. Phys. Chem. Ref. Data, 1986, 15, 1369-1436. [all data]
Goebel, 1982
Goebel, K.-J.,
Gaschromatographische Identifizierung Niedrig Siedender Substanzen Mittels Retentionsindices und Rechnerhilfe,
J. Chromatogr., 1982, 235, 1, 119-127, https://doi.org/10.1016/S0021-9673(00)95793-5
. [all data]
Haken, Nguyen, et al., 1979
Haken, J.K.; Nguyen, A.; Wainwright, M.S.,
Application of linear extrathermodynamic relationships to alcohols, aldehydes, ketones, amd ethoxy alcohols,
J. Chromatogr., 1979, 179, 1, 75-85, https://doi.org/10.1016/S0021-9673(00)80658-5
. [all data]
Bogoslovsky, Anvaer, et al., 1978
Bogoslovsky, Yu.N.; Anvaer, B.I.; Vigdergauz, M.S.,
Chromatographic constants in gas chromatography (in Russian), Standards Publ. House, Moscow, 1978, 192. [all data]
Zenkevich, 2005
Zenkevich, I.G.,
Experimentally measured retention indices., 2005. [all data]
Flanagan, Streete, et al., 1997
Flanagan, R.J.; Streete, P.J.; Ramsey, J.D.,
Volatile Substance Abuse, UNODC Technical Series, No 5, United Nations, Office on Drugs and Crime, Vienna International Centre, PO Box 500, A-1400 Vienna, Austria, 1997, 56, retrieved from http://www.odccp.org/pdf/technicalseries1997-01-011.pdf. [all data]
Strete, Ruprah, et al., 1992
Strete, P.J.; Ruprah, M.; Ramsey, J.D.; Flanagan, R.J.,
Detection and identification of volatile substances by headspace capillary gas chromatography to aid the diagnosis of acute poisoning,
Analyst, 1992, 117, 7, 1111-1127, https://doi.org/10.1039/an9921701111
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas S°gas,1 bar Entropy of gas at standard conditions (1 bar) ΔcH°gas Enthalpy of combustion of gas at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.