Cyclobutane, ethyl-
- Formula: C6H12
- Molecular weight: 84.1595
- IUPAC Standard InChIKey: NEZRFXZYPAIZAD-UHFFFAOYSA-N
- CAS Registry Number: 4806-61-5
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Ethylcyclobutane
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -27.7 ± 0.7 | kJ/mol | Cm | Fuchs and Hallman, 1983 | ALS |
ΔfH°gas | -26.3 ± 1.1 | kJ/mol | Ccb | Good, Moore, et al., 1974 | ALS |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
40.50 | 50. | Thermodynamics Research Center, 1997 | p=1 bar.; GT |
57.46 | 100. | ||
72.52 | 150. | ||
87.32 | 200. | ||
113.1 | 273.15 | ||
122.8 | 298.15 | ||
123.5 | 300. | ||
162.7 | 400. | ||
197.4 | 500. | ||
226.3 | 600. | ||
250.5 | 700. | ||
271.0 | 800. | ||
288.5 | 900. | ||
303.5 | 1000. | ||
316.5 | 1100. | ||
327.8 | 1200. | ||
337.5 | 1300. | ||
346.0 | 1400. | ||
353.3 | 1500. | ||
367.9 | 1750. | ||
378.5 | 2000. | ||
386.4 | 2250. | ||
392.3 | 2500. | ||
396.9 | 2750. | ||
400.5 | 3000. |
Phase change data
Go To: Top, Gas phase thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 343.8 ± 0.1 | K | AVG | N/A | Average of 12 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 130.2 ± 0.4 | K | AVG | N/A | Average of 14 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 32. ± 1. | kJ/mol | AVG | N/A | Average of 6 values; Individual data points |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
28.67 | 343.9 | Majer and Svoboda, 1985 |
IR Spectrum
Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Gas Phase Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Owner | NIST Standard Reference Data Program Collection (C) 2018 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | NIST Mass Spectrometry Data Center |
State | gas |
Instrument | HP-GC/MS/IRD |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
NIST MS number | 504 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Squalane | 50. | 621. | Rijks and Cramers, 1974 | N2; Column length: 100. m; Column diameter: 0.25 mm |
Capillary | Squalane | 70. | 624. | Rijks and Cramers, 1974 | N2; Column length: 100. m; Column diameter: 0.25 mm |
Capillary | Squalane | 70. | 623. | Cramers, Rijks, et al., 1970 | Column length: 100. m; Column diameter: 0.25 mm |
Capillary | Squalane | 70. | 623. | Cramers, Rijks, et al., 1970 | Column length: 100. m; Column diameter: 0.25 mm |
Capillary | Squalane | 70. | 623. | Cramers, Rijks, et al., 1970 | Column length: 100. m; Column diameter: 0.25 mm |
Packed | Squalane | 27. | 619. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Packed | Squalane | 49. | 622. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Packed | Squalane | 67. | 625. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Packed | Squalane | 86. | 626. | Hively and Hinton, 1968 | He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-5 | 627.3 | Xu, van Stee, et al., 2003 | 30. m/0.25 mm/1. μm, He, 2.5 K/min; Tstart: 50. C; Tend: 200. C |
Normal alkane RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Methyl Silicone | 619.37 | Baraldi, Rapparini, et al., 1999 | 60. m/0.25 mm/0.25 μm, 40. C @ 10. min, 5. K/min; Tend: 220. C |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Methyl Silicone | 621. | Feng and Mu, 2007 | Program: not specified |
Normal alkane RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | SOLGel-Wax | 692. | Johanningsmeier and McFeeters, 2011 | 30. m/0.25 mm/0.25 μm, Helium; Program: 40 0C (2 min) 5 0C/min -> 140 0C 10 0C/min -> 250 0C (3 min) |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Fuchs and Hallman, 1983
Fuchs, R.; Hallman, J.H.,
Heats of vaporization of some monosubstituted cyclopropane, cyclobutane, and cyclopentane derivatives. Some observations on the enthalpies of isodesmic ring opening reactions of cyclobutane derivatives,
Can. J. Chem., 1983, 61, 503-505. [all data]
Good, Moore, et al., 1974
Good, W.D.; Moore, R.T.; Osborn, A.G.; Douslin, D.R.,
The enthalpies of formation of ethylcyclobutane, methylenecyclobutane, and 1,1-dimethylcyclopropane,
J. Chem. Thermodyn., 1974, 6, 303-310. [all data]
Thermodynamics Research Center, 1997
Thermodynamics Research Center,
Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Rijks and Cramers, 1974
Rijks, J.A.; Cramers, C.A.,
High precision capillary gas chromatography of hydrocarbons,
Chromatographia, 1974, 7, 3, 99-106, https://doi.org/10.1007/BF02269819
. [all data]
Cramers, Rijks, et al., 1970
Cramers, C.A.; Rijks, J.A.; Pacáková, V.; de Andrade, I.R.,
The application of precision gas chromatography to the identification of types of hydrocarbons,
J. Chromatogr., 1970, 51, 13-21, https://doi.org/10.1016/S0021-9673(01)96835-9
. [all data]
Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E.,
Variation of the retention index with temperature on squalane substrates,
J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203
. [all data]
Xu, van Stee, et al., 2003
Xu, X.; van Stee, L.L.P.; Williams, J.; Beens, J.; Adahchour, M.; Vreuls, R.J.J.; Brinkman, U.A.Th.; Lelieveld, J.,
Comprehensive two-dimensional gas chromatography (GC×GC) measurements of volatile organic compounds in the atmosphere,
Atmos. Chem. Phys., 2003, 3, 3, 665-682, https://doi.org/10.5194/acp-3-665-2003
. [all data]
Baraldi, Rapparini, et al., 1999
Baraldi, R.; Rapparini, F.; Rossi, F.; Latella, A.; Ciccioli, P.,
Volatile organic compound emissions from flowers of the most occurring and economically important species of fruit trees,
Phys. Chem. Earth, 1999, 24, 6, 729-732, https://doi.org/10.1016/S1464-1909(99)00073-8
. [all data]
Feng and Mu, 2007
Feng, H.; Mu, L.-L.,
Quantitative structure-retention relationships for alkane and its derivatives based on electrotopological state index and molecular shape index,
Chem. Ind. Engineering (Chinese), 2007, 24, 2, 161-168. [all data]
Johanningsmeier and McFeeters, 2011
Johanningsmeier, S.D.; McFeeters, R.F.,
Detection of volatile spoilage metabolites in fermented cucumbers using nontargeted, comprehensive 2-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGCxTOFMS),
J. Food Sci., 2011, 76, 1, c168-c177, https://doi.org/10.1111/j.1750-3841.2010.01918.x
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, IR Spectrum, Mass spectrum (electron ionization), Gas Chromatography, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Tboil Boiling point Tfus Fusion (melting) point ΔfH°gas Enthalpy of formation of gas at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.