Butane, 2,2,3-trimethyl-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
Δfgas-48.96 ± 0.27kcal/molCcbProsen and Rossini, 1945ALS
Δfgas-49.21kcal/molN/ADavies and Gilbert, 1941Value computed using ΔfHliquid° value of -238.0±1.0 kj/mol from Davies and Gilbert, 1941 and ΔvapH° value of 32.1 kj/mol from Prosen and Rossini, 1945.; DRB

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
26.640200.Scott D.W., 1974Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, 2, Scott D.W., 1974]. This approach gives a good agreement with experimental data available for alkanes. Results of statistical thermodynamics calculation for 2,2,3-trimethylbutane [ Scott D.W., 1953] also agree well with experimental data at low temperatures. However, the values of S and Cp at 1500 K are 15 and 33 J/mol*K below than those given by [ Scott D.W., 1974].; GT
35.961273.15
39.02 ± 0.1298.15
39.250300.
50.870400.
61.200500.
70.201600.
78.000700.
84.900800.
90.999900.
96.3001000.
101.001100.
105.201200.
109.001300.
112.001400.
115.001500.

Constant pressure heat capacity of gas

Cp,gas (cal/mol*K) Temperature (K) Reference Comment
42.739 ± 0.043328.80Waddington G., 1947GT
45.091 ± 0.045348.85
47.390 ± 0.048369.20
50.920 ± 0.050400.40
54.541 ± 0.055434.30
57.359 ± 0.057461.80

References

Go To: Top, Gas phase thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D., Heats of combustion and formation of the paraffin hydrocarbons at 25° C, J. Res. NBS, 1945, 263-267. [all data]

Davies and Gilbert, 1941
Davies, G.F.; Gilbert, E.C., Heats of combustion and formation of the nine isomeric heptanes in the liquid state, J. Am. Chem. Soc., 1941, 63, 2730-2732. [all data]

Scott D.W., 1974
Scott D.W., Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]

Scott D.W., 1974, 2
Scott D.W., Correlation of the chemical thermodynamic properties of alkane hydrocarbons, J. Chem. Phys., 1974, 60, 3144-3165. [all data]

Scott D.W., 1953
Scott D.W., Thermodynamic functions of 2,2,3-trimethylbutane, J. Am. Chem. Soc., 1953, 75, 2006-2007. [all data]

Waddington G., 1947
Waddington G., An improved flow calorimeter. Experimental vapor heat capacities and heats of vaporization of n-heptane and 2,2,3-trimethylbutane, J. Am. Chem. Soc., 1947, 69, 22-30. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, References