Butane, 2,2,3-trimethyl-
- Formula: C7H16
- Molecular weight: 100.2019
- IUPAC Standard InChIKey: ZISSAWUMDACLOM-UHFFFAOYSA-N
- CAS Registry Number: 464-06-2
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Triptan; Triptane; 2,2,3-Trimethylbutane
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -204.8 ± 1.1 | kJ/mol | Ccb | Prosen and Rossini, 1945 | ALS |
ΔfH°gas | -205.9 | kJ/mol | N/A | Davies and Gilbert, 1941 | Value computed using ΔfHliquid° value of -238.0±1.0 kj/mol from Davies and Gilbert, 1941 and ΔvapH° value of 32.1 kj/mol from Prosen and Rossini, 1945.; DRB |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
111.46 | 200. | Scott D.W., 1974 | Recommended values were obtained from the consistent correlation scheme for alkanes [ Scott D.W., 1974, 2, Scott D.W., 1974]. This approach gives a good agreement with experimental data available for alkanes. Results of statistical thermodynamics calculation for 2,2,3-trimethylbutane [ Scott D.W., 1953] also agree well with experimental data at low temperatures. However, the values of S and Cp at 1500 K are 15 and 33 J/mol*K below than those given by [ Scott D.W., 1974].; GT |
150.46 | 273.15 | ||
163.3 ± 0.4 | 298.15 | ||
164.22 | 300. | ||
212.84 | 400. | ||
256.06 | 500. | ||
293.72 | 600. | ||
326.35 | 700. | ||
355.22 | 800. | ||
380.74 | 900. | ||
402.92 | 1000. | ||
422.58 | 1100. | ||
440.16 | 1200. | ||
456.06 | 1300. | ||
468.61 | 1400. | ||
481.16 | 1500. |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
178.82 ± 0.18 | 328.80 | Waddington G., 1947 | GT |
188.66 ± 0.19 | 348.85 | ||
198.28 ± 0.20 | 369.20 | ||
213.05 ± 0.21 | 400.40 | ||
228.20 ± 0.23 | 434.30 | ||
239.99 ± 0.24 | 461.80 |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -236.9 ± 1.1 | kJ/mol | Ccb | Prosen and Rossini, 1945 | ALS |
ΔfH°liquid | -238. ± 1. | kJ/mol | Ccb | Davies and Gilbert, 1941 | ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -4803.99 ± 0.50 | kJ/mol | Cm | Coops, Mulder, et al., 1946 | Reanalyzed by Cox and Pilcher, 1970, Original value = -4802.1 ± 0.3 kJ/mol; Corresponding ΔfHºliquid = -237.2 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -4804.4 ± 1.0 | kJ/mol | Ccb | Prosen and Rossini, 1945 | Corresponding ΔfHºliquid = -236.9 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
ΔcH°liquid | -4803. ± 1. | kJ/mol | Ccb | Davies and Gilbert, 1941 | Corresponding ΔfHºliquid = -238.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 292.25 | J/mol*K | N/A | Huffman, Gross, et al., 1961 | DH |
S°liquid | 27.11 | J/mol*K | N/A | Huffman, Parks, et al., 1930 | Extrapolation below 90 K, 14.0 cal mol-1 K-1.; DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
213.51 | 298.15 | Huffman, Gross, et al., 1961 | T = 10 to 300 K.; DH |
208.4 | 293.9 | Huffman, Parks, et al., 1930 | T = 89 to 294 K. Value is unsmoothed experimental datum.; DH |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Prosen and Rossini, 1945
Prosen, E.J.; Rossini, F.D.,
Heats of combustion and formation of the paraffin hydrocarbons at 25° C,
J. Res. NBS, 1945, 263-267. [all data]
Davies and Gilbert, 1941
Davies, G.F.; Gilbert, E.C.,
Heats of combustion and formation of the nine isomeric heptanes in the liquid state,
J. Am. Chem. Soc., 1941, 63, 2730-2732. [all data]
Scott D.W., 1974
Scott D.W.,
Chemical Thermodynamic Properties of Hydrocarbons and Related Substances. Properties of the Alkane Hydrocarbons, C1 through C10 in the Ideal Gas State from 0 to 1500 K. U.S. Bureau of Mines, Bulletin 666, 1974. [all data]
Scott D.W., 1974, 2
Scott D.W.,
Correlation of the chemical thermodynamic properties of alkane hydrocarbons,
J. Chem. Phys., 1974, 60, 3144-3165. [all data]
Scott D.W., 1953
Scott D.W.,
Thermodynamic functions of 2,2,3-trimethylbutane,
J. Am. Chem. Soc., 1953, 75, 2006-2007. [all data]
Waddington G., 1947
Waddington G.,
An improved flow calorimeter. Experimental vapor heat capacities and heats of vaporization of n-heptane and 2,2,3-trimethylbutane,
J. Am. Chem. Soc., 1947, 69, 22-30. [all data]
Coops, Mulder, et al., 1946
Coops, J.; Mulder, D.; Dienske, J.W.; Smittenberg, J.,
The heats of combustion of a number of hydrocarbons,
Rec. Trav. Chim. Pays/Bas, 1946, 65, 128. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Huffman, Gross, et al., 1961
Huffman, H.M.; Gross, M.E.; Scott, D.W.; McCullough, I.P.,
Low temperature thermodynamic properties of six isomeric heptanes,
J. Phys. Chem., 1961, 65, 495-503. [all data]
Huffman, Parks, et al., 1930
Huffman, H.M.; Parks, G.S.; Thomas, S.B.,
Thermal data on organic compounds. VIII. The heat capacities, entropies and free energies of the isomeric heptanes,
J. Am. Chem. Soc., 1930, 52, 3241-3251. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Cp,liquid Constant pressure heat capacity of liquid S°liquid Entropy of liquid at standard conditions ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.