Benzene, fluoro-
- Formula: C6H5F
- Molecular weight: 96.1023
- IUPAC Standard InChIKey: PYLWMHQQBFSUBP-UHFFFAOYSA-N
- CAS Registry Number: 462-06-6
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Fluorobenzene; Monofluorobenzene; Phenyl fluoride; UN 2387; Fluorobenzenes
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Reaction thermochemistry data
Go To: Top, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C6H4F- + =
By formula: C6H4F- + H+ = C6H5F
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 386.8 ± 2.1 | kcal/mol | G+TS | Buker, Nibbering, et al., 1997 | gas phase; B |
ΔrH° | 387.3 ± 2.1 | kcal/mol | G+TS | Andrade and Riveros, 1996 | gas phase; B |
ΔrH° | 387.2 ± 2.5 | kcal/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B |
ΔrH° | 387.2 ± 2.5 | kcal/mol | Bran | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
ΔrH° | 387.2 ± 5.4 | kcal/mol | G+TS | Briscese and Riveros, 1975 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 378.6 ± 2.0 | kcal/mol | IMRE | Buker, Nibbering, et al., 1997 | gas phase; B |
ΔrG° | 379.1 ± 2.0 | kcal/mol | IMRE | Andrade and Riveros, 1996 | gas phase; B |
ΔrG° | 378.9 ± 2.0 | kcal/mol | TDEq | Meot-ner and Kafafi, 1988 | gas phase; anchored to 88MEO scale, not the "87 acidity scale". The Kiefer, Zhang, et al., 1997 BDE is for ortho.; B |
ΔrG° | 379.0 ± 2.6 | kcal/mol | H-TS | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
ΔrG° | 379.0 ± 5.3 | kcal/mol | IMRB | Briscese and Riveros, 1975 | gas phase; B |
By formula: Br- + C6H5F = (Br- • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.6 ± 1.6 | kcal/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 20. | cal/mol*K | N/A | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 2.1 ± 1.0 | kcal/mol | IMRE | Paul and Kebarle, 1991 | gas phase; ΔGaff measured at 303 K, corrected to 423 K, ΔSaff taken as that of PhNO2..Br-; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
2.1 | 423. | PHPMS | Paul and Kebarle, 1991 | gas phase; Entropy change calculated or estimated; M |
By formula: C6H5F+ + C6H5F = (C6H5F+ • C6H5F)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 7.1 | kcal/mol | PI | Ruhl, Bisling, et al., 1986 | gas phase; from vIP of perpendicular dimer; M |
ΔrH° | 14.1 | kcal/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; Entropy change calculated or estimated; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 27. | cal/mol*K | N/A | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; Entropy change calculated or estimated; M |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
5.3 | 356. | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; Entropy change calculated or estimated; M |
By formula: C6H6+ + C6H5F = (C6H6+ • C6H5F)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 6.6 | kcal/mol | PI | Ruhl, Bisling, et al., 1986 | gas phase; from vIP of perpendicular dimer; M |
ΔrH° | 17.0 | kcal/mol | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 30. | cal/mol*K | PHPMS | Meot-Ner (Mautner), Hamlet, et al., 1978 | gas phase; M |
C6H4F- + =
By formula: C6H4F- + H+ = C6H5F
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 399.60 ± 0.90 | kcal/mol | Bran | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 391.8 ± 1.0 | kcal/mol | H-TS | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
C6H4F- + =
By formula: C6H4F- + H+ = C6H5F
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 395.2 ± 2.0 | kcal/mol | Bran | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 387.0 ± 2.1 | kcal/mol | H-TS | Wenthold and Squires, 1995 | gas phase; By HO- cleavage of substituted silanes; B |
By formula: C6H7N+ + C6H5F = (C6H7N+ • C6H5F)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.7 | kcal/mol | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 26.5 | cal/mol*K | PHPMS | Meot-Ner (Mautner) and El-Shall, 1986 | gas phase; M |
By formula: NO- + C6H5F = (NO- • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 37.8 | kcal/mol | ICR | Reents and Freiser, 1981 | gas phase; switching reaction,Thermochemical ladder(NO+)C2H5OH, Entropy change calculated or estimated; Farid and McMahon, 1978; M |
By formula: Cl- + C6H5F = (Cl- • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 5.90 | kcal/mol | TDEq | French, Ikuta, et al., 1982 | gas phase; B |
Free energy of reaction
ΔrG° (kcal/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
5.9 | 300. | PHPMS | French, Ikuta, et al., 1982 | gas phase; M |
By formula: C7H8+ + C6H5F = (C7H8+ • C6H5F)
Bond type: Charge transfer bond (positive ion)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3.9 | kcal/mol | PI | Ruhl, Bisling, et al., 1986 | gas phase; from vIP of perpendicular dimer; M |
By formula: H4N+ + C6H5F = (H4N+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.4 | kcal/mol | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 18.0 | cal/mol*K | PHPMS | Deakyne and Meot-Ner (Mautner), 1985 | gas phase; M |
By formula: (V- • C6H5F) + C6H6 = (V- • C6H6 • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 3. ± 15. | kcal/mol | N/A | Judai, Hirano, et al., 1997 | gas phase; B |
By formula: V- + C6H5F = (V- • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 14.4 ± 3.8 | kcal/mol | N/A | Judai, Hirano, et al., 1997 | gas phase; B |
By formula: (Li+ • C6H5F) + C6H5F = (Li+ • 2C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 22.7 ± 0.7 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Na+ • C6H5F) + C6H5F = (Na+ • 2C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 15.7 ± 0.9 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Cs+ • C6H5F) + C6H5F = (Cs+ • 2C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 10.7 ± 1.1 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (Rb+ • C6H5F) + C6H5F = (Rb+ • 2C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 11.3 ± 1.2 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: (K+ • C6H5F) + C6H5F = (K+ • 2C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.0 ± 0.7 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Li+ + C6H5F = (Li+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 35.1 ± 5.0 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Na+ + C6H5F = (Na+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 16.7 ± 0.8 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Cs+ + C6H5F = (Cs+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.0 ± 1.2 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Rb+ + C6H5F = (Rb+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 12.8 ± 1.3 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: K+ + C6H5F = (K+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 13.2 ± 0.7 | kcal/mol | CIDT | Amunugama and Rodgers, 2002 | RCD |
By formula: Cr+ + C6H5F = (Cr+ • C6H5F)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 39.2 | kcal/mol | RAK | Ryzhov, 1999 | RCD |
Mass spectrum (electron ionization)
Go To: Top, Reaction thermochemistry data, UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-NW- 529 |
NIST MS number | 229256 |
UV/Visible spectrum
Go To: Top, Reaction thermochemistry data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | Bowden and Braude, 1952 |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 11510 |
Instrument | Hilger, Beckman spectrophotometer |
Melting point | - 42.2 |
Boiling point | 84.7 |
References
Go To: Top, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Buker, Nibbering, et al., 1997
Buker, H.H.; Nibbering, N.M.M.; Espinosa, D.; Mongin, F.; Schlosser, M.,
Additivity of substituent effects in the fluoroarene series: Equilibrium acidity in the gas phase and deprotonation rates in ethereal solution,
Tetrahed. Lett., 1997, 38, 49, 8519-8522, https://doi.org/10.1016/S0040-4039(97)10303-3
. [all data]
Andrade and Riveros, 1996
Andrade, P.B.M.; Riveros, J.M.,
Relative Gas-phase Acidities of Fluoro- and Chlorobenzene,
J. Mass Spectrom., 1996, 31, 7, 767, https://doi.org/10.1002/(SICI)1096-9888(199607)31:7<767::AID-JMS345>3.0.CO;2-Q
. [all data]
Meot-ner and Kafafi, 1988
Meot-ner, M.; Kafafi, S.A.,
Carbon Acidities of Aromatic Compounds,
J. Am. Chem. Soc., 1988, 110, 19, 6297, https://doi.org/10.1021/ja00227a003
. [all data]
Kiefer, Zhang, et al., 1997
Kiefer, J.H.; Zhang, Q.; Kern, R.D.; Yao, J.; Jursic, B.,
Pyrolysis of Aromatic Azines: Pyrazine, Pyrimidine, and Pyridine,
J. Phys. Chem. A, 1997, 101, 38, 7061, https://doi.org/10.1021/jp970211z
. [all data]
Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R.,
Determination of the gas-phase acidities of halogen-substituted aromatic compounds using the silane-cleavage method,
J. Mass Spectrom., 1995, 30, 1, 17, https://doi.org/10.1002/jms.1190300105
. [all data]
Briscese and Riveros, 1975
Briscese, S.M.J.; Riveros, J.M.,
Gas phase nucleophilic reactions of aromatic systems,
J. Am. Chem. Soc., 1975, 97, 230. [all data]
Paul and Kebarle, 1991
Paul, G.J.C.; Kebarle, P.,
Stabilities of Complexes of Br- with Substituted Benzenes (SB) Based on Determinations of the Gas-Phase Equilibria Br- + SB = (BrSB)-,
J. Am. Chem. Soc., 1991, 113, 4, 1148, https://doi.org/10.1021/ja00004a014
. [all data]
Ruhl, Bisling, et al., 1986
Ruhl, E.; Bisling, P.G.F.; Brutschy, B.; Baumgartel, H.,
Photoionization of Aromatic van der Waals Complexes in a Supersonic Jet,
Chem. Phys. Lett., 1986, 126, 3-4, 232, https://doi.org/10.1016/S0009-2614(86)80075-6
. [all data]
Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H.,
Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies,
J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034
. [all data]
Meot-Ner (Mautner) and El-Shall, 1986
Meot-Ner (Mautner), M.; El-Shall, M.S.,
Ionic Charge Transfer Complexes. 1. Cationic Complexes with Delocalized and Partially Localized pi Systems,
J. Am. Chem. Soc., 1986, 108, 15, 4386, https://doi.org/10.1021/ja00275a026
. [all data]
Reents and Freiser, 1981
Reents, W.D.; Freiser, B.S.,
Gas-Phase Binding Energies and Spectroscopic Properties of NO+ Charge-Transfer Complexes,
J. Am. Chem. Soc., 1981, 103, 2791. [all data]
Farid and McMahon, 1978
Farid, R.; McMahon, T.B.,
Gas-Phase Ion-Molecule Reactions of Alkyl Nitrites by Ion Cyclotron Resonance Spectroscopy,
Int. J. Mass Spectrom. Ion Phys., 1978, 27, 2, 163, https://doi.org/10.1016/0020-7381(78)80037-0
. [all data]
French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P.,
Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-,
Can. J. Chem., 1982, 60, 1907. [all data]
Deakyne and Meot-Ner (Mautner), 1985
Deakyne, C.A.; Meot-Ner (Mautner), M.,
Unconventional Ionic Hydrogen Bonds. 2. NH+ pi. Complexes of Onium Ions with Olefins and Benzene Derivatives,
J. Am. Chem. Soc., 1985, 107, 2, 474, https://doi.org/10.1021/ja00288a034
. [all data]
Judai, Hirano, et al., 1997
Judai, K.; Hirano, M.; Kawamata, H.; Yabushita, S.; Nakajima, A.; Kaya, K.,
Formation of Vanadium-Arene Complex Anions and Their Photoelectron Spectroscopy,
Chem. Phys. Lett., 1997, 270, 1-2, 23, https://doi.org/10.1016/S0009-2614(97)00336-9
. [all data]
Amunugama and Rodgers, 2002
Amunugama, R.; Rodgers, M.T.,
Influence of substituents on cation-pi interactions. 2. Absolute binding energies of alkali metal cation-fluorobenzene complexes determined by threshold collision-induced dissociation and theoretical studies,
J. Phys. Chem. A, 2002, 106, 39, 9092, https://doi.org/10.1021/jp020459a
. [all data]
Ryzhov, 1999
Ryzhov, V.,
Binding Energies of Chromium Cations with Fluorobenzenes from Radiative Association Kinetics,
Int. J. Mass Spectrom., 1999, 185/186/187, 913. [all data]
Bowden and Braude, 1952
Bowden, K.; Braude, E.A.,
J. Chem. Soc., 1952, 1068. [all data]
Notes
Go To: Top, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, References
- Symbols used in this document:
T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.