1,3-Butadiyne
- Formula: C4H2
- Molecular weight: 50.0587
- IUPAC Standard InChIKey: LLCSWKVOHICRDD-UHFFFAOYSA-N
- CAS Registry Number: 460-12-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Isotopologues:
- Other names: Butadiyne; Biacetylene; Biethynyl; Diacetylene; HC≡CC≡CH; buta-1,3-diyne
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Phase change data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 464. | kJ/mol | Kin | Kiefer, Sidhu, et al., 1992 | ALS |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
30.30 | 50. | Dorofeeva O.V., 1991 | Recommended values are in good agreement with other statistically calculated values [52FER/WER]. There is an appreciable difference with values calculated by [ Dessau L., 1988] because these authors used the estimated values of vibrational frequencies instead of experimental ones.; GT |
37.87 | 100. | ||
47.35 | 150. | ||
57.50 | 200. | ||
70.17 | 273.15 | ||
73.7 ± 1.0 | 298.15 | ||
73.92 | 300. | ||
84.43 | 400. | ||
91.51 | 500. | ||
96.86 | 600. | ||
101.26 | 700. | ||
105.05 | 800. | ||
108.38 | 900. | ||
111.33 | 1000. | ||
113.93 | 1100. | ||
116.24 | 1200. | ||
118.27 | 1300. | ||
120.06 | 1400. | ||
121.64 | 1500. | ||
123.04 | 1600. | ||
124.27 | 1700. | ||
125.37 | 1800. | ||
126.34 | 1900. | ||
127.20 | 2000. |
Phase change data
Go To: Top, Gas phase thermochemistry data, Henry's Law data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 284. ± 3. | K | AVG | N/A | Average of 6 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 263. | K | N/A | Pauling, Springall, et al., 1939 | Uncertainty assigned by TRC = 2. K; TRC |
Tfus | 237.7 | K | N/A | Straus and Kollek, 1926 | Uncertainty assigned by TRC = 2.5 K; TRC |
Tfus | 237. | K | N/A | Mueller, 1925 | Uncertainty assigned by TRC = 3. K; TRC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
25.4 | 258. | N/A | Straus and Kollek, 2006 | Based on data from 195. to 273. K. See also Boublik, Fried, et al., 1984.; AC |
33.4 | 219. | N/A | Tanneberger, 2006 | Based on data from 188. to 234. K. See also Boublik, Fried, et al., 1984.; AC |
26.1 | 268. | A | Stephenson and Malanowski, 1987 | Based on data from 237. to 283. K. See also Dykyj, 1971.; AC |
26.4 | 267. | N/A | Stull, 1947 | Based on data from 191. to 282. K.; AC |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
190.7 to 282.9 | 3.05288 | 570.271 | -95.334 | Stull, 1947 | Coefficents calculated by NIST from author's data. |
195.0 to 273. | 2.64407 | 460.684 | -108.556 | Straus and Kollek, 1926, 2 | Coefficents calculated by NIST from author's data. |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
36.3 | 188. to 234. | N/A | Tanneberger, 2006 | AC |
36.2 | 211. | A | Stull, 1947 | Based on data from 190. to 232. K.; AC |
Henry's Law data
Go To: Top, Gas phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.19 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. |
References
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Kiefer, Sidhu, et al., 1992
Kiefer, J.H.; Sidhu, S.S.; Kern, R.D.; Xie, K.; Chen, H.; Harding, L.B.,
The homogeneous pyrolysis of acetylene II: the high temperature radical chain mechanism,
Combust. Sci. Technol., 1992, 82, 101-130. [all data]
Dorofeeva O.V., 1991
Dorofeeva O.V.,
Thermodynamic properties of linear carbon chain molecules with conjugated triple bonds. Part I. Polyacetylenes, H(CC)nH (n=2-6), cyanopolyacetylenes, H(CC)nCN (n=1-5), and dicyanopolyacetylenes, NC(CC)nCN (n=1-4),
Thermochim. Acta, 1991, 178, 273-286. [all data]
Dessau L., 1988
Dessau L.,
Vibrations and thermodynamic functions of long-chain acetylenes,
Z. Phys. Chem. (Leipzig), 1988, 269, 187-190. [all data]
Pauling, Springall, et al., 1939
Pauling, L.; Springall, H.D.; Palmer, K.J.,
The Electron Diffraction Investigation of Methylacetylene, Dimethyl- acetylene, Dimethyldiacetylene, Methyl Cyanide, Diacetylene and Cyanogen cyanogen,
J. Am. Chem. Soc., 1939, 61, 927-8. [all data]
Straus and Kollek, 1926
Straus, F.; Kollek, L.,
About Diacetylene,
Ber. Dtsch. Chem. Ges., 1926, 59, 1664-81. [all data]
Mueller, 1925
Mueller, F.G.,
Diacetylene (1,3-butadiyne),
Helv. Chim. Acta, 1925, 8, 826-32. [all data]
Straus and Kollek, 2006
Straus, Fritz; Kollek, Leo,
Über Diacetylen,
Ber. dtsch. Chem. Ges. A/B, 2006, 59, 8, 1664-1681, https://doi.org/10.1002/cber.19260590804
. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Tanneberger, 2006
Tanneberger, H.,
Einige Bemerkungen über die Dampfdruck-Kurve des Diacetylens (Butadiins).,
Ber. dtsch. Chem. Ges. A/B, 2006, 66, 4, 484-486, https://doi.org/10.1002/cber.19330660408
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Dykyj, 1971
Dykyj, J.,
Petrochemia, 1971, 11, 2, 27. [all data]
Stull, 1947
Stull, Daniel R.,
Vapor Pressure of Pure Substances. Organic and Inorganic Compounds,
Ind. Eng. Chem., 1947, 39, 4, 517-540, https://doi.org/10.1021/ie50448a022
. [all data]
Straus and Kollek, 1926, 2
Straus, F.; Kollek, L.,
Uber Diacetylen,
Ber. Dtsch. Chem. Ges., 1926, 59, 8, 1664-1681, https://doi.org/10.1002/cber.19260590804
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Phase change data, Henry's Law data, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Tboil Boiling point Tfus Fusion (melting) point d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔfH°gas Enthalpy of formation of gas at standard conditions ΔsubH Enthalpy of sublimation ΔvapH Enthalpy of vaporization - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.