1,3-Cycloheptadiene
- Formula: C7H10
- Molecular weight: 94.1543
- IUPAC Standard InChIKey: GWYPDXLJACEENP-UHFFFAOYSA-N
- CAS Registry Number: 4054-38-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Cyclohepta-1,3-diene
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Glushko Thermocenter, Russian Academy of Sciences, Moscow
Constant pressure heat capacity of gas
Cp,gas (cal/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
8.867 | 50. | Dorofeeva O.V., 1986 | Recommended values of S(T) and Cp(T) agree with those calculated by molecular mechanics method [ Lenz T.G., 1989] within 2-3 J/mol*K. |
12.55 | 100. | ||
15.75 | 150. | ||
19.33 | 200. | ||
25.741 | 273.15 | ||
28.1 ± 1.7 | 298.15 | ||
28.303 | 300. | ||
37.770 | 400. | ||
46.126 | 500. | ||
53.086 | 600. | ||
58.858 | 700. | ||
63.695 | 800. | ||
67.784 | 900. | ||
71.267 | 1000. | ||
74.245 | 1100. | ||
76.797 | 1200. | ||
78.994 | 1300. | ||
80.889 | 1400. | ||
82.531 | 1500. |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: 2H2 + C7H10 = C7H14
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | -49.92 ± 0.08 | kcal/mol | Chyd | Turner, Mallon, et al., 1973 | liquid phase; solvent: Glacial acetic acid |
ΔrH° | -50.77 ± 0.15 | kcal/mol | Chyd | Conn, Kistiakowsky, et al., 1939 | gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -51.26 ± 0.05 kcal/mol; At 355 K |
Mass spectrum (electron ionization)
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, UV/Visible spectrum, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Chemical Concepts |
NIST MS number | 164684 |
UV/Visible spectrum
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
View spectrum image in SVG format.
Download spectrum in JCAMP-DX format.
Source | Pesch and Friess, 1950 |
---|---|
Owner | INEP CP RAS, NIST OSRD Collection (C) 2007 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
Origin | INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS |
Source reference | RAS UV No. 9745 |
Instrument | Beckman DU |
Melting point | - 110.4 |
Boiling point | 120.5 |
Gas Chromatography
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | OV-1 | 100. | 820.3 | Engewald, Billing, et al., 1987 | Column length: 50. m; Column diameter: 0.3 mm |
Capillary | SE-30 | 130. | 831. | Bredael, 1982 | Column length: 100. m; Column diameter: 0.5 mm |
Capillary | SE-30 | 80. | 815. | Bredael, 1982 | Column length: 100. m; Column diameter: 0.5 mm |
Capillary | Squalane | 42.5 | 796. | Engewald, Epsch, et al., 1974 | N2; Column length: 100. m; Column diameter: 0.23 mm |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Petrocol DH | 804. | White, Hackett, et al., 1992 | 100. m/0.25 mm/0.5 μm, He, 1. K/min; Tstart: 30. C; Tend: 220. C |
Packed | SE-30 | 811. | Buchman, Cao, et al., 1984 | He, Chromosorb AW, 40. C @ 10. min, 10. K/min, 210. C @ 30. min; Column length: 3.05 m |
Van Den Dool and Kratz RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Packed | SE-30 | 811. | Peng, Ding, et al., 1988 | Supelcoport; Chromosorb; Column length: 3.05 m; Program: 40C(5min) => 10C/min => 200C or 250C (60min) |
Van Den Dool and Kratz RI, polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Packed | Carbowax 20M | 1060. | Buchman, Cao, et al., 1984 | He, Supelcoport, 40. C @ 10. min, 10. K/min, 210. C @ 30. min; Column length: 3.05 m |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | Squalane | 815. | Chen, 2008 | Program: not specified |
Normal alkane RI, polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | DB-Wax | 1060. | Peng, Yang, et al., 1991 | Program: not specified |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Dorofeeva O.V., 1986
Dorofeeva O.V.,
Thermodynamic properties of twenty-one monocyclic hydrocarbons,
J. Phys. Chem. Ref. Data, 1986, 15, 437-464. [all data]
Lenz T.G., 1989
Lenz T.G.,
Force-field calculations giving accurate conformation, Hf(T), S(T), and Cp(T) for unsaturated acyclic and cyclic hydrocarbons,
J. Phys. Chem., 1989, 93, 1588-1592. [all data]
Turner, Mallon, et al., 1973
Turner, R.B.; Mallon, B.J.; Tichy, M.; Doering, W.v.E.; Roth, W.R.; Schroder, G.,
Heats of hydrogenation. X. Conjugative interaction in cyclic dienes and trienes,
J. Am. Chem. Soc., 1973, 95, 8605-8610. [all data]
Conn, Kistiakowsky, et al., 1939
Conn, J.B.; Kistiakowsky, G.B.; Smith, E.A.,
Heats of organic reactions. VIII. Some further hydrogenations, including those of some acetylenes,
J. Am. Chem. Soc., 1939, 61, 1868-1876. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Pesch and Friess, 1950
Pesch, E.; Friess, S.L.,
J. Am. Chem. Soc., 1950, 72, 5756. [all data]
Engewald, Billing, et al., 1987
Engewald, W.; Billing, U.; Welsch, T.; Haufe, G.,
Structure-retention correlations of hydrocarbons in gas-liquid and gas-solid chromatography. Cycloalkenes and cycloalkadienes,
Chromatographia, 1987, 23, 8, 590-594, https://doi.org/10.1007/BF02324870
. [all data]
Bredael, 1982
Bredael, P.,
Retention indices of hydrocarbons on SE-30,
J. Hi. Res. Chromatogr. Chromatogr. Comm., 1982, 5, 6, 325-328, https://doi.org/10.1002/jhrc.1240050610
. [all data]
Engewald, Epsch, et al., 1974
Engewald, W.; Epsch, K.; Graefe, J.; Welsch, Th.,
Molekülstruktur und retentionsverhalten. II. Retentionsverhalten cycloaliphatischer kohlenwasser-stoffe bei der gas-adsorptions- und gas-verteilungschromatographie,
J. Chromatogr., 1974, 91, 623-631, https://doi.org/10.1016/S0021-9673(01)97943-9
. [all data]
White, Hackett, et al., 1992
White, C.M.; Hackett, J.; Anderson, R.R.; Kail, S.; Spock, P.S.,
Linear temperature programmed retention indices of gasoline range hydrocarbons and chlorinated hydrocarbons on cross-linked polydimethylsiloxane,
J. Hi. Res. Chromatogr., 1992, 15, 2, 105-120, https://doi.org/10.1002/jhrc.1240150211
. [all data]
Buchman, Cao, et al., 1984
Buchman, O.; Cao, G.-Y.; Peng, C.T.,
Structure assignment by retention index in gas-liquid radiochromatography of substituted cyclohexenes,
J. Chromatogr., 1984, 312, 75-90, https://doi.org/10.1016/S0021-9673(01)92765-7
. [all data]
Peng, Ding, et al., 1988
Peng, C.T.; Ding, S.F.; Hua, R.L.; Yang, Z.C.,
Prediction of Retention Indexes I. Structure-Retention Index Relationship on Apolar Columns,
J. Chromatogr., 1988, 436, 137-172, https://doi.org/10.1016/S0021-9673(00)94575-8
. [all data]
Chen, 2008
Chen, H.-F.,
Quantitative prediction of gas chromatography retention indices with support vector machines, radial basis neutral networks and multiple linear regression,
Anal. Chim. Acta, 2008, 609, 1, 24-36, https://doi.org/10.1016/j.aca.2008.01.003
. [all data]
Peng, Yang, et al., 1991
Peng, C.T.; Yang, Z.C.; Ding, S.F.,
Prediction of rentention idexes. II. Structure-retention index relationship on polar columns,
J. Chromatogr., 1991, 586, 1, 85-112, https://doi.org/10.1016/0021-9673(91)80028-F
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.