Benzene, 1,3-difluoro-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δfgas-73.91 ± 0.25kcal/molCcrGood, Lacina, et al., 1962Corrected for CODATA value of ΔfH

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Henry's Law data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C6H3F2- + Hydrogen cation = Benzene, 1,3-difluoro-

By formula: C6H3F2- + H+ = C6H4F2

Quantity Value Units Method Reference Comment
Δr374.0 ± 2.1kcal/molG+TSBuker, Nibbering, et al., 1997gas phase; B
Δr<376.55 ± 0.30kcal/molG+TSBriscese and Riveros, 1975gas phase; < iPrOH; value altered from reference due to change in acidity scale; B
Quantity Value Units Method Reference Comment
Δr366.3 ± 2.0kcal/molIMREBuker, Nibbering, et al., 1997gas phase; B
Δr<368.80kcal/molIMRBBriscese and Riveros, 1975gas phase; < iPrOH; value altered from reference due to change in acidity scale; B

Chlorine anion + Benzene, 1,3-difluoro- = (Chlorine anion • Benzene, 1,3-difluoro-)

By formula: Cl- + C6H4F2 = (Cl- • C6H4F2)

Quantity Value Units Method Reference Comment
Δr14.6 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr22.6cal/mol*KN/ALarson and McMahon, 1984gas phase; switching reaction(Cl-)ClCOOCH3, Entropy change calculated or estimated; Larson and McMahon, 1984, 2; M
Quantity Value Units Method Reference Comment
Δr7.8 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Δr7.7 ± 1.0kcal/molTDEqFrench, Ikuta, et al., 1982gas phase; B

C6H4F2+ + Benzene, 1,3-difluoro- = (C6H4F2+ • Benzene, 1,3-difluoro-)

By formula: C6H4F2+ + C6H4F2 = (C6H4F2+ • C6H4F2)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr13.2kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr27.cal/mol*KN/AMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr5.2kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; Entropy change calculated or estimated; M

C6H6+ + Benzene, 1,3-difluoro- = (C6H6+ • Benzene, 1,3-difluoro-)

By formula: C6H6+ + C6H4F2 = (C6H6+ • C6H4F2)

Bond type: Charge transfer bond (positive ion)

Quantity Value Units Method Reference Comment
Δr13.9kcal/molPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KPHPMSMeot-Ner (Mautner), Hamlet, et al., 1978gas phase; M

Chromium ion (1+) + Benzene, 1,3-difluoro- = (Chromium ion (1+) • Benzene, 1,3-difluoro-)

By formula: Cr+ + C6H4F2 = (Cr+ • C6H4F2)

Quantity Value Units Method Reference Comment
Δr32.0kcal/molRAKRyzhov, 1999RCD

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.013 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-1641.7Gautzsch and Zinn, 19968. K/min; Tstart: 35. C; Tend: 300. C

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-101644.Zenkevich, 200525. m/0.20 mm/0.10 μm, N2/He, 6. K/min; Tstart: 50. C; Tend: 250. C

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Good, Lacina, et al., 1962
Good, W.D.; Lacina, J.L.; Scott, D.W.; McCullough, J.P., Combustion calorimetry of organic fluorine compounds. The heats of combustion and formation of the difluorobenzenes, 4-fluorotoluene and m-trifluorotoluic acid, J. Phys. Chem., 1962, 66, 1529-1532. [all data]

Buker, Nibbering, et al., 1997
Buker, H.H.; Nibbering, N.M.M.; Espinosa, D.; Mongin, F.; Schlosser, M., Additivity of substituent effects in the fluoroarene series: Equilibrium acidity in the gas phase and deprotonation rates in ethereal solution, Tetrahed. Lett., 1997, 38, 49, 8519-8522, https://doi.org/10.1016/S0040-4039(97)10303-3 . [all data]

Briscese and Riveros, 1975
Briscese, S.M.J.; Riveros, J.M., Gas phase nucleophilic reactions of aromatic systems, J. Am. Chem. Soc., 1975, 97, 230. [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Meot-Ner (Mautner), Hamlet, et al., 1978
Meot-Ner (Mautner), M.; Hamlet, P.; Hunter, E.P.; Field, F.H., Bonding Energies in Association Ions of Aromatic Molecules. Correlations with Ionization Energies, J. Am. Chem. Soc., 1978, 100, 17, 5466, https://doi.org/10.1021/ja00485a034 . [all data]

Ryzhov, 1999
Ryzhov, V., Binding Energies of Chromium Cations with Fluorobenzenes from Radiative Association Kinetics, Int. J. Mass Spectrom., 1999, 185/186/187, 913. [all data]

Gautzsch and Zinn, 1996
Gautzsch, R.; Zinn, P., Use of incremental models to estimate the retention indexes of aromatic compounds, Chromatographia, 1996, 43, 3/4, 163-176, https://doi.org/10.1007/BF02292946 . [all data]

Zenkevich, 2005
Zenkevich, I.G., Experimentally measured retention indices., 2005. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Gas Chromatography, References