Ethanol, 2-fluoro-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Fluorine anion + Ethanol, 2-fluoro- = (Fluorine anion • Ethanol, 2-fluoro-)

By formula: F- + C2H5FO = (F- • C2H5FO)

Quantity Value Units Method Reference Comment
Δr34.8 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M
Quantity Value Units Method Reference Comment
Δr26.3cal/mol*KN/ALarson and McMahon, 1983gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M
Quantity Value Units Method Reference Comment
Δr27.0 ± 2.0kcal/molIMRELarson and McMahon, 1983gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M

C2H4FO- + Hydrogen cation = Ethanol, 2-fluoro-

By formula: C2H4FO- + H+ = C2H5FO

Quantity Value Units Method Reference Comment
Δr371.2 ± 2.9kcal/molG+TSGraul, Schnute, et al., 1990gas phase; B
Quantity Value Units Method Reference Comment
Δr364.6 ± 2.8kcal/molCIDCGraul, Schnute, et al., 1990gas phase; B
Δr363.5 ± 3.5kcal/molIMRBClair and McMahon, 1980gas phase; Between HF and acetone; value altered from reference due to change in acidity scale; B
Δr364.9 ± 3.4kcal/molIMRBDawson and Jennings, 1977gas phase; Between HF and acetone; value altered from reference due to change in acidity scale; B

CN- + Ethanol, 2-fluoro- = (CN- • Ethanol, 2-fluoro-)

By formula: CN- + C2H5FO = (CN- • C2H5FO)

Quantity Value Units Method Reference Comment
Δr20.4 ± 3.5kcal/molIMRELarson and McMahon, 1987gas phase; B,M
Quantity Value Units Method Reference Comment
Δr25.3cal/mol*KN/ALarson and McMahon, 1987gas phase; switching reaction,Thermochemical ladder(CN-)H2O, Entropy change calculated or estimated; Payzant, Yamdagni, et al., 1971; M
Quantity Value Units Method Reference Comment
Δr12.9 ± 2.3kcal/molIMRELarson and McMahon, 1987gas phase; B,M

Chlorine anion + Ethanol, 2-fluoro- = (Chlorine anion • Ethanol, 2-fluoro-)

By formula: Cl- + C2H5FO = (Cl- • C2H5FO)

Quantity Value Units Method Reference Comment
Δr20.5 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M
Quantity Value Units Method Reference Comment
Δr25.0cal/mol*KN/ALarson and McMahon, 1984, 2gas phase; switching reaction(Cl-)t-C4H9OH, Entropy change calculated or estimated; French, Ikuta, et al., 1982; M
Quantity Value Units Method Reference Comment
Δr13.0 ± 2.0kcal/molIMRELarson and McMahon, 1984gas phase; B,M

Fluorine anion + Ethanol, 2-fluoro- = C2H4D5F2O-

By formula: F- + C2H5FO = C2H4D5F2O-

Quantity Value Units Method Reference Comment
Δr26.5 ± 2.0kcal/molIMREWilkinson, Szulejko, et al., 1992gas phase; Reported relative to ROH..F-, 0.5 kcal/mol weaker.; B

Sodium ion (1+) + Ethanol, 2-fluoro- = (Sodium ion (1+) • Ethanol, 2-fluoro-)

By formula: Na+ + C2H5FO = (Na+ • C2H5FO)

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
23.6298.IMREMcMahon and Ohanessian, 2000Anchor alanine=39.89; RCD

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B., Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements, J. Am. Chem. Soc., 1983, 105, 2944. [all data]

Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R., Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study, J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034 . [all data]

Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P., Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions, J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014 . [all data]

Graul, Schnute, et al., 1990
Graul, S.T.; Schnute, M.E.; Squires, R.R., Gas-Phase Acidities of Carboxylic Acids and Alcohols from Collision-Induced Dissociation of Dimer Cluster Ions, Int. J. Mass Spectrom. Ion Proc., 1990, 96, 2, 181, https://doi.org/10.1016/0168-1176(90)87028-F . [all data]

Clair and McMahon, 1980
Clair, R.L.; McMahon, T.B., An ion cyclotron resonance study of base-induced elimination reactions of fluorinated alcohols and unimolecular loss of HF from chemically activated fluoroalkoxide ions, Int. J. Mass Spectrom. Ion Phys., 1980, 33, 21. [all data]

Dawson and Jennings, 1977
Dawson, J.H.J.; Jennings, K.R., Relative gas phase acidities of some fluoroalcohols, Int. J. Mass Spectrom. Ion Phys., 1977, 25, 47. [all data]

Larson and McMahon, 1987
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. The energetics of interaction between cyanide ion and bronsted acids, J. Am. Chem. Soc., 1987, 109, 6230. [all data]

Payzant, Yamdagni, et al., 1971
Payzant, J.D.; Yamdagni, R.; Kebarle, P., Hydration of CN-, NO2-, NO3-, and HO- in the gas phase, Can. J. Chem., 1971, 49, 3308. [all data]

Larson and McMahon, 1984
Larson, J.W.; McMahon, T.B., Hydrogen bonding in gas phase anions. An experimental investigation of the interaction between chloride ion and bronsted acids from ICR chloride exchange equilibria, J. Am. Chem. Soc., 1984, 106, 517. [all data]

Larson and McMahon, 1984, 2
Larson, J.W.; McMahon, T.B., Gas phase negative ion chemistry of alkylchloroformates, Can. J. Chem., 1984, 62, 675. [all data]

French, Ikuta, et al., 1982
French, M.A.; Ikuta, S.; Kebarle, P., Hydrogen bonding of O-H and C-H hydrogen donors to Cl-. Results from mass spectrometric measurement of the ion-molecule equilibria RH + Cl- = RHCl-, Can. J. Chem., 1982, 60, 1907. [all data]

Wilkinson, Szulejko, et al., 1992
Wilkinson, F.E.; Szulejko, J.E.; Allison, C.E.; Mcmahon, T.B., Fourier Transform Ion Cyclotron Resonance Investigation of the Deuterium Isotope Effect on Gas Phase Ion/Molecule Hydrogen Bonding Interactions in Alcohol-Fluoride Adduct Ions, Int. J. Mass Spectrom., 1992, 117, 487-505, https://doi.org/10.1016/0168-1176(92)80110-M . [all data]

McMahon and Ohanessian, 2000
McMahon, T.B.; Ohanessian, G., An Experimental and Ab Initio Study of the Nature of the Binding in Gas-Phase Complexes of Sodium Ions, Chem. Eur. J., 2000, 6, 16, 2931, https://doi.org/10.1002/1521-3765(20000818)6:16<2931::AID-CHEM2931>3.0.CO;2-7 . [all data]


Notes

Go To: Top, Reaction thermochemistry data, References