Benzene, 1-fluoro-4-methyl-
- Formula: C7H7F
- Molecular weight: 110.1289
- IUPAC Standard InChIKey: WRWPPGUCZBJXKX-UHFFFAOYSA-N
- CAS Registry Number: 352-32-9
- Chemical structure:
This structure is also available as a 2d Mol file - Other names: Toluene, p-fluoro-; p-Fluoromethylbenzene; p-Fluorotoluene; 1-Fluoro-4-methylbenzene; 4-Fluorotoluene; para-Fluorotoluene; 1-Methyl-4-fluorobenzene; NSC 8861; Toluene, 4-fluoro
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Condensed phase thermochemistry data
Go To: Top, Phase change data, Reaction thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°liquid | -186.9 ± 0.08 | kJ/mol | Ccr | Good, Lacina, et al., 1962 | Corrected for CODATA value of ΔfH; ALS |
Quantity | Value | Units | Method | Reference | Comment |
ΔcH°liquid | -3747.2 ± 0.71 | kJ/mol | Ccr | Good, Lacina, et al., 1962 | Corrected for CODATA value of ΔfH; Reanalyzed by Cox and Pilcher, 1970, Original value = -3743.3 ± 0.71 kJ/mol; ALS |
ΔcH°liquid | -3777.9 | kJ/mol | Ccb | Swarts, 1919 | Not corrected for CODATA value of ΔfH; ALS |
Quantity | Value | Units | Method | Reference | Comment |
S°liquid | 237.11 | J/mol*K | N/A | Scott, Messerly, et al., 1962 | DH |
Constant pressure heat capacity of liquid
Cp,liquid (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
173.7 | 298.15 | Meva'a and Lichanot, 1990 | T = 216 to 298 K. Cp(liq) = 164.969 + 0.350T J/mol*K (-57 to 25 C).; DH |
172.3 | 298.15 | Good, Lacina, et al., 1962 | DH |
171.17 | 298.15 | Scott, Messerly, et al., 1962 | T = 13 to 361 K.; DH |
Phase change data
Go To: Top, Condensed phase thermochemistry data, Reaction thermochemistry data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 389. | K | N/A | PCR Inc., 1990 | BS |
Tboil | 389.8 | K | N/A | Weast and Grasselli, 1989 | BS |
Tboil | 389.8 | K | N/A | Majer and Svoboda, 1985 | |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 215.6 | K | N/A | Meva'a and Lichanot, 1990, 2 | Uncertainty assigned by TRC = 0.2 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Ttriple | 216.48 | K | N/A | Scott, Messerly, et al., 1962, 2 | Uncertainty assigned by TRC = 0.01 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
Tc | 589.5 | K | N/A | Majer and Svoboda, 1985 | |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 39.47 | kJ/mol | N/A | Majer and Svoboda, 1985 | |
ΔvapH° | 39.5 | kJ/mol | N/A | Boublik, Fried, et al., 1984 | Based on data from 340. to 430. K. See also Basarová and Svoboda, 1991.; AC |
ΔvapH° | 39.4 ± 0.08 | kJ/mol | V | Good, Lacina, et al., 1962 | Corrected for CODATA value of ΔfH; ALS |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
34.08 | 389.8 | N/A | Majer and Svoboda, 1985 | |
37.0 | 355. | A | Stephenson and Malanowski, 1987 | Based on data from 340. to 429. K. See also Potter and Saylor, 1951 and Dykyj, Svoboda, et al., 1999.; AC |
Enthalpy of vaporization
ΔvapH =
A exp(-βTr) (1 − Tr)β
ΔvapH =
Enthalpy of vaporization (at saturation pressure)
(kJ/mol)
Tr = reduced temperature (T / Tc)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A (kJ/mol) | β | Tc (K) | Reference | Comment |
---|---|---|---|---|---|
298. to 390. | 54.86 | 0.273 | 589.5 | Majer and Svoboda, 1985 |
Antoine Equation Parameters
log10(P) = A − (B / (T + C))
P = vapor pressure (bar)
T = temperature (K)
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | A | B | C | Reference | Comment |
---|---|---|---|---|---|
340.83 to 428.36 | 4.11897 | 1373.934 | -55.766 | Scott, Messerly, et al., 1962 | Coefficents calculated by NIST from author's data. |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
8.800 | 215.55 | N/A | Meva'a and Lichanot, 1990 | DH |
9.351 | 216.49 | N/A | Scott, Messerly, et al., 1962 | DH |
9.35 | 216.5 | N/A | Domalski and Hearing, 1996 | AC |
7.65 | 213. | DSC | Ahmed and Eades, 1972 | AC |
Entropy of fusion
ΔfusS (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
41. | 215.55 | Meva'a and Lichanot, 1990 | DH |
43.19 | 216.49 | Scott, Messerly, et al., 1962 | DH |
Reaction thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, IR Spectrum, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
C7H6F- + =
By formula: C7H6F- + H+ = C7H7F
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1588. ± 8.8 | kJ/mol | G+TS | Caldwell and Bartmess | gas phase; value altered from reference due to change in acidity scale |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1558. ± 8.4 | kJ/mol | IMRE | Caldwell and Bartmess | gas phase; value altered from reference due to change in acidity scale |
IR Spectrum
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, References, Notes
Data compiled by: Coblentz Society, Inc.
- SOLUTION (10% CCl4 FOR 3800-1330, 10% CS2 FOR 1330-450); DOW KBr FOREPRISM-GRATING $$SPECTRAL CONTAMINATION DUE TO CCl4 AROUND 1550 CM-1 HAS BEEN SUBTRACTED; DIGITIZED BY COBLENTZ SOCIETY (BATCH I) FROM HARD COPY; 2 cm-1 resolution
- SOLUTION (2% IN CCl4 FOR 3800-1330 CM-1, 2% IN CS2 FOR 1330-450 CM-1); DOW KBr FOREPRISM-GRATING; DIGITIZED BY NIST FROM HARD COPY (FROM TWO SEGMENTS); 4 cm-1 resolution
References
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Good, Lacina, et al., 1962
Good, W.D.; Lacina, J.L.; Scott, D.W.; McCullough, J.P.,
Combustion calorimetry of organic fluorine compounds. The heats of combustion and formation of the difluorobenzenes, 4-fluorotoluene and m-trifluorotoluic acid,
J. Phys. Chem., 1962, 66, 1529-1532. [all data]
Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G.,
Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]
Swarts, 1919
Swarts, F.,
Etudes thermochimiques sur les combinaisons organiques fluorees,
J. Chim. Phys., 1919, 17, 3-70. [all data]
Scott, Messerly, et al., 1962
Scott, D.W.; Messerly, J.F.; Todd, S.S.; Hossenlopp, I.A.; Douslin, D.R.; McCullough, J.P.,
4-Fluorotoluene: Chemical thermodynamic properties, vibrational assignment, and internal rotation,
J. Chem. Phys., 1962, 37, 867-873. [all data]
Meva'a and Lichanot, 1990
Meva'a, L.M.; Lichanot, A.,
Proprietes thermodynamiques en phase condensee des ortho, meta et para fluorotoluene, cresol et toluidine,
Thermochim. Acta, 1990, 158, 335-345. [all data]
PCR Inc., 1990
PCR Inc.,
Research Chemicals Catalog 1990-1991, PCR Inc., Gainesville, FL, 1990, 1. [all data]
Weast and Grasselli, 1989
CRC Handbook of Data on Organic Compounds, 2nd Editon, Weast,R.C and Grasselli, J.G., ed(s)., CRC Press, Inc., Boca Raton, FL, 1989, 1. [all data]
Majer and Svoboda, 1985
Majer, V.; Svoboda, V.,
Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]
Meva'a and Lichanot, 1990, 2
Meva'a, L.M.; Lichanot, A.,
Thermodynamic properties in condensed phase of ortho, meta and para fluorotoluene, cresol and toluidine,
Thermochim. Acta, 1990, 158, 335. [all data]
Scott, Messerly, et al., 1962, 2
Scott, D.W.; Messerly, J.F.; Todd, S.S.; Hossenlopp, I.A.; Douslin, D.R.; McCullough, J.P.,
4-Fluorotoluene: Chemical Thremodynamic Properties, Vibrational Assignment, and Internal Rotation,
J. Chem. Phys., 1962, 37, 867-73. [all data]
Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E.,
The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]
Basarová and Svoboda, 1991
Basarová, Pavlína; Svoboda, Václav,
Calculation of heats of vaporization of halogenated hydrocarbons from saturated vapour pressure data,
Fluid Phase Equilibria, 1991, 68, 13-34, https://doi.org/10.1016/0378-3812(91)85008-I
. [all data]
Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw,
Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2
. [all data]
Potter and Saylor, 1951
Potter, John C.; Saylor, John H.,
The Vapor Pressures and Freezing Points of Some Organic Fluorine Compounds 1,2,
J. Am. Chem. Soc., 1951, 73, 1, 90-91, https://doi.org/10.1021/ja01145a032
. [all data]
Dykyj, Svoboda, et al., 1999
Dykyj, J.; Svoboda, J.; Wilhoit, R.C.; Frenkel, M.L.; Hall, K.R.,
Vapor Pressure of Chemicals: Part A. Vapor Pressure and Antoine Constants for Hydrocarbons and Sulfur, Selenium, Tellurium and Hydrogen Containing Organic Compounds, Springer, Berlin, 1999, 373. [all data]
Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D.,
Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III,
J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985
. [all data]
Ahmed and Eades, 1972
Ahmed, A.M.I.; Eades, R.G.,
Proton magnetic relaxation in toluene and some derivatives,
J. Chem. Soc., Faraday Trans. 2, 1972, 68, 1623, https://doi.org/10.1039/f29726801623
. [all data]
Caldwell and Bartmess
Caldwell, G.; Bartmess, J.E.,
, Unpublished results. [all data]
Notes
Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, References
- Symbols used in this document:
Cp,liquid Constant pressure heat capacity of liquid S°liquid Entropy of liquid at standard conditions Tboil Boiling point Tc Critical temperature Tfus Fusion (melting) point Ttriple Triple point temperature ΔcH°liquid Enthalpy of combustion of liquid at standard conditions ΔfH°liquid Enthalpy of formation of liquid at standard conditions ΔfusH Enthalpy of fusion ΔfusS Entropy of fusion ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.