Carbon monosulfide
- Formula: CS
- Molecular weight: 44.076
- IUPAC Standard InChIKey: DXHPZXWIPWDXHJ-UHFFFAOYSA-N
- CAS Registry Number: 2944-05-0
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 280.33 | kJ/mol | Review | Chase, 1998 | Data last reviewed in December, 1976 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 210.55 | J/mol*K | Review | Chase, 1998 | Data last reviewed in December, 1976 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 600. | 600. to 6000. |
---|---|---|
A | 21.76387 | 34.47721 |
B | 24.99890 | 2.966255 |
C | -8.095581 | -0.950722 |
D | -4.563949 | 0.113718 |
E | 0.126372 | -0.997482 |
F | 273.2328 | 267.0275 |
G | 230.5497 | 247.0731 |
H | 280.3284 | 280.3284 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in December, 1976 | Data last reviewed in December, 1976 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Robert C. Dunbar
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: Fe+ + CS = (Fe+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 207. ± 13. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | |
ΔrH° | 231. ± 12. | kJ/mol | CIDT | Schroeder, Kretzschmar, et al., 1999 |
By formula: Co+ + CS = (Co+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 258. ± 33. | kJ/mol | CIDT | Rue, Armentrout, et al., 2001 | |
ΔrH° | 240. ± 9.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
By formula: Cr+ + CS = (Cr+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 163. ± 5.9 | kJ/mol | CIDT | Rue, Armentrout, et al., 2001, 2 | |
ΔrH° | 158. ± 9.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
By formula: Mn+ + CS = (Mn+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 80. ± 21. | kJ/mol | CIDT | Rue, Armentrout, et al., 2001, 2 | |
ΔrH° | 78. ± 14. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
By formula: Mo+ + CS = (Mo+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 162. ± 13. | kJ/mol | CIDT | Schroeder, Kretzschmar, et al., 2003 | |
ΔrH° | 162. ± 18. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
By formula: Ti+ + CS = (Ti+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 154. ± 5.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
By formula: Sc+ + CS = (Sc+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 133. ± 7.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
By formula: Zr+ + CS = (Zr+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 258. ± 11. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
By formula: Ag+ + CS = (Ag+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 152. ± 20. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
By formula: V+ + CS = (V+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 164. ± 7.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
By formula: Y+ + CS = (Y+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 137. ± 7.9 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
By formula: Ni+ + CS = (Ni+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 236. ± 9.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
By formula: Zn+ + CS = (Zn+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 141. ± 9.2 | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
By formula: Cu+ + CS = (Cu+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 234. ± 10. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
By formula: Nb+ + CS = (Nb+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 242. ± 11. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
By formula: Ru+ + CS = (Ru+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 253. ± 20. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
By formula: Pd+ + CS = (Pd+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 200. ± 14. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
By formula: Rh+ + CS = (Rh+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 234. ± 19. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 |
Constants of diatomic molecules
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Klaus P. Huber and Gerhard H. Herzberg
Data collected through October, 1976
Symbol | Meaning |
---|---|
State | electronic state and / or symmetry symbol |
Te | minimum electronic energy (cm-1) |
ωe | vibrational constant – first term (cm-1) |
ωexe | vibrational constant – second term (cm-1) |
ωeye | vibrational constant – third term (cm-1) |
Be | rotational constant in equilibrium position (cm-1) |
αe | rotational constant – first term (cm-1) |
γe | rotation-vibration interaction constant (cm-1) |
De | centrifugal distortion constant (cm-1) |
βe | rotational constant – first term, centrifugal force (cm-1) |
re | internuclear distance (Å) |
Trans. | observed transition(s) corresponding to electronic state |
ν00 | position of 0-0 band (units noted in table) |
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Fragments of further band systems and Rydberg series | ||||||||||||
↳missing citation | ||||||||||||
G | (81373) | [1229] | G ← X | 81347 | ||||||||
↳missing citation | ||||||||||||
F | F ← X | 77537 | ||||||||||
↳missing citation | ||||||||||||
Continuous absorption to a repulsive state; 74600 - 76300 cm-1. | ||||||||||||
↳missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
E | (71890) | [1459] H | (E ← X) (V) | 71979 H | ||||||||
↳missing citation | ||||||||||||
c (3Σ+) | c ← X 1 | 71803 H | ||||||||||
↳missing citation | ||||||||||||
C (1Σ+) | (71255) | [1425] H | C ← X 2 | 71327 H | ||||||||
↳missing citation | ||||||||||||
B (1Σ+) | (64868) | [1332] H | (B ← X) (V) | 64893 H | ||||||||
↳missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
A' 1Σ+ | 56505 | 462.4 H | 7.46 3 | -0.108 | 0.5114 | 0.0109 4 | (2.5E-6) | 1.944 | A' → X R | 56093 H | ||
↳missing citation | ||||||||||||
x, y | Fragments of two perturbing states (Bx<0.61, By<0.77) near 39170 and 39950 cm-1. | |||||||||||
↳Barrow, Dixon, et al., 1961 | ||||||||||||
A new band at 39138 cm-1, originally Field and Bergeman, 1971 attributed to a 3Δ state, is now believed to be due to v=11 of a 3Π Bruna, Kammer, et al., 1975. | ||||||||||||
A 1Π | 38904.4 | 1073.4 5 Z | 10.1 | 0.7800 5 6 $I | 0.0063 | -0.0004 | (1.65E-6) | 1.5739 | A ↔ X 7 8 R | 38797.6 Z | ||
↳missing citation; missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
e 3Σ- | 38683 | 752 9 | 4.7 | 0.6194 9 | 0.0040 | (1.68E-6) | 1.766 | e ← X R | 38417 9 | |||
↳missing citation | ||||||||||||
d 3ΔI 11 | 35675.0 | 795.6 10 | 4.91 | 0.6367 10 | 0.0061 | (1.63E-6) | 1.7420 | d ← X R | 35430.6 10 | |||
↳missing citation; Field and Bergeman, 1971; Cossart and Bergeman, 1976 | ||||||||||||
a' 3Σ+ | 31331.4 | 830.7 10 | 5.04 | 0.6489 10 12 | 0.0060 | (1.58E-6) | 1.7255 | a' ← X R | 31104.6 10 | |||
↳missing citation; Field and Bergeman, 1971; Cossart and Bergeman, 1976 | ||||||||||||
Unclassified emission bands, probably due to triplet - triplet transitions, in the region 13300 - 22200 cm-1. | ||||||||||||
↳missing citation | ||||||||||||
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
a 3Πr | 27661.0 13 | 1135.1 10 | 7.73 | 0.7851 10 | 0.0072 | [1.94E-6] 14 | 1.5687 | a → X 15 R | 27585.7 10 | |||
↳Tewarson and Palmer, 1968; missing citation; Cossart and Bergeman, 1976 | ||||||||||||
X 1Σ+ | 0 | 1285.08 Z | 6.46 | 0.8200462 $I | 0.0059224 | 1.43E-6 | 1.534941 16 | |||||
↳Mockler and Bird, 1955; Kewley, Sastry, et al., 1963; Lovas and Krupenie, 1974 |
Notes
1 | Single weak absorption band. |
2 | Bands described as diffuse. |
3 | ωeze = -0.0377. |
4 | αv= +0.00112(v+1/2)2 - 0.000208(v+1/2)3. |
5 | Deperturbed constants Barrow, Dixon, et al., 1961; all observed vibrational levels of this state are strongly perturbed by interactions with a 3Π, a' 3Σ+, d 3Δ, e 3Σ- Lagerqvist, Westerlund, et al., 1959, Barrow, Dixon, et al., 1961, Field and Bergeman, 1971. The following rather different set of deperturbed parameters is given by Cossart and Bergeman, 1976; Te = 38895.7 Cossart and Bergeman, 1976, ωe = 1077.3 Cossart and Bergeman, 1976, ωexe = 10.66 Cossart and Bergeman, 1976, Be = 0.7881 Cossart and Bergeman, 1976, αe = 0.0092 Cossart and Bergeman, 1976. |
6 | Λ-doubling intervals in v=0 (J=1-9) range from 0.00045 to 0.05961cm-1 Silvers, Bergeman, et al., 1970, Field and Bergeman, 1971. The variation with J of the Stark effect was observed in optical-rf double resonance and was analyzed Field and Bergeman, 1971 to give μel(v=0) = 0.63 D (+CS-); see also Silvers, Bergeman, et al., 1970. |
7 | Lifetimes from Hanle effect observations τ(v=0) = 176 ns Silvers and Chiu, 1972 (corrected for lengthening by triplet mixing), τ(v=2) = 203 ns Silvers and Chiu, 1972. The phase shift method Smith, 1969 gives τ(v=0) = 255 ns Smith, 1969, τ(v=1) = 339 ns Smith, 1969, τ(v ≥ 2) = 292 ns Smith, 1969; f00 = 0.0059. |
8 | Morse-potential Franck-Condon factors Felenbok, 1965: compare with experimental values from the fluorescence spectrum excited in the VUV photolysis of CS2 and OCS Lee and Judge, 1975. C34S isotopic bands Narasimham and Gopal, 1966, Chaudhry, Upadhya, et al., 1970. |
9 | Only v=1 and 2 observed Barrow, Dixon, et al., 1961; the vibrational numbering is from isotope studies Field and Bergeman, 1971. The following set of deperturbed parameters is given by Cossart and Bergeman, 1976; Te = 38681.9, ωe = 752.8, ωexe = 4.95, Be = 0.6227, αe = 0.0062. Spin-splitting in v=1: λ+1/2γ = 1.75 Barrow, Dixon, et al., 1961. |
10 | Deperturbed constants Cossart and Bergeman, 1976. |
11 | This state, originally Barrow, Dixon, et al., 1961, Field and Bergeman, 1971 considered to be 3Π and labelled k, is now believed to be 3Δ Robbe and Schamps, 1972, Bruna, Kammer, et al., 1975. The name has been changed to d 3Δ in order to emphasize the similarity to CO. A ~ -50. |
12 | Spin-splitting constant λ(v=10) = -1.28 Field and Bergeman, 1971. |
13 | A ~ 95 cm-1. |
14 | From Taylor, Setser, et al., 1972. |
15 | Two subbands corresponding to 3Π1 - 3Σ+ and 3Π0 - 3Σ+ have been observed Taylor, Setser, et al., 1972. |
16 | Microwave sp. 20 |
17 | From a short extrapolation of the vibrational levels in A 1Σ+ Bell, Ng, et al., 1972, assuming that the atomic products arising at the dissociation limit are C, 3P2 + S, 3P2. The latest thermochemical (mass-spectrometric) value is D00= 7.21 eV Hildenbrand, 1972. Both values agree with an upper limit (< 7.7 eV) derived from infrared chemiluminescence studies Hancock, Morley, et al., 1971, and the corresponding heats of formation, ΔHof0 = 66.11 or 69.5 kcal/mole, respectively, are supported by photodissociation Okabe, 1972 and photoionization Dibeler and Walker, 1967 results for CS2. See, however, Hubin-Franskin, Locht, et al., 1976, Hubin-Franskin, Katihabwa, et al., 1976 who suggest ΔHof0 = 33 kcal/mole, implying D00 = 8.79 eV. |
18 | From the photoelectron spectrum Jonathan, Morris, et al., 1972, King, Kroto, et al., 1972, Frost, Lee, et al., 1972. |
19 | RKR potential functions Nair, Singh, et al., 1965. |
20 | Dipole moments [-CS+, see McGurk, Tigleaar, et al., 1973] from Stark effect μel(v=0) = 1.958 D Winnewisser and Cook, 1968, μel(v=1) = 1.936 D Winnewisser and Cook, 1968. Zeeman effect McGurk, Tigleaar, et al., 1973, molecular g factor -0.2702. 32S/33S and 32S/34S mass ratios from microwave spectra Rosenblum, Townes, et al., 1958. |
21 | D00(CS) + I.P.(S) - I.P.(CS). |
22 | From the photoelectron spectrum Frost, Lee, et al., 1972: see also Jonathan, Morris, et al., 1972. |
23 | A = -298.46 Horani, 1979. |
24 | From the photoelectron spectrum Frost, Lee, et al., 1972; Jonathan, Morris, et al., 1972 and King, Kroto, et al., 1972 give 1330 and 1290 cm-1, respectively. Only one level has been found in the optical spectrum Horani, 1979. |
25 | Spin-splitting constant γ0 = +0.0201. |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Constants of diatomic molecules, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Schroeder, Kretzschmar, et al., 1999
Schroeder, D.; Kretzschmar, I.; Schwarz; Rue, C.; Armentrout, P.B.,
On the Structural Dichotomy of Cationic, Anionic, and Neutral FeS2,
Inorg. Chem., 1999, 38, 15, 3474, https://doi.org/10.1021/ic990241b
. [all data]
Rue, Armentrout, et al., 2001
Rue, C.; Armentrout, P.B.; Kretzschmar, I.; Schroeder, D.; Schwarz, H.,
Guided Ion Beam Studies of the Reactions of Fe+ and Co+ With CS2 and COS,
J. Phys. Chem. A, 2001, 105, 37, 8456, https://doi.org/10.1021/jp0120716
. [all data]
Rue, Armentrout, et al., 2001, 2
Rue, C.; Armentrout, P.B.; Kretzschmar, I.; Schroeder, D.; Schwarz, H.,
Guided Ion Beam Studies of the Reactions of the State-Specific Reactions of Cr+ and Mn+ with CS2 and COS,
Int. J. Mass Spectrom., 2001, 210/211, 283, https://doi.org/10.1016/S1387-3806(01)00400-6
. [all data]
Schroeder, Kretzschmar, et al., 2003
Schroeder, D.; Kretzschmar, I.; Schwarz; Armentrout, P.B.,
Structure, Thermochemistry, and Reactivityof MSn+ Cations (M=V,Mo; n=1-3) in the Gas Phase,
Int. J. Mass Spectrom., 2003, 228, 2-3, 439, https://doi.org/10.1016/S1387-3806(03)00137-4
. [all data]
Barrow, Dixon, et al., 1961
Barrow, R.F.; Dixon, R.N.; Lagerqvist, A.; Wright, C.V.,
Rotational analysis of the absorption spectrum of carbon monosulphide,
Ark. Fys., 1961, 18, 543. [all data]
Field and Bergeman, 1971
Field, R.W.; Bergeman, T.H.,
Radio-frequency spectroscopy and perturbation analysis in CS A1Π(v=O),
J. Chem. Phys., 1971, 54, 2936. [all data]
Bruna, Kammer, et al., 1975
Bruna, P.J.; Kammer, W.E.; Vasudevan, K.,
Vertical electronic spectrum of CS molecule,
Chem. Phys., 1975, 9, 91. [all data]
Cossart and Bergeman, 1976
Cossart, D.; Bergeman, T.,
Off-diagonal spin-orbit and apparent spin-spin parameters in carbon monosulfide,
J. Chem. Phys., 1976, 65, 5462-5468. [all data]
Tewarson and Palmer, 1968
Tewarson, A.; Palmer, H.B.,
A new band system of CS in the near ultraviolet region,
J. Mol. Spectrosc., 1968, 27, 246. [all data]
Mockler and Bird, 1955
Mockler, R.C.; Bird, G.R.,
Microwave spectrum of carbon monsulfide,
Phys. Rev., 1955, 98, 1837. [all data]
Kewley, Sastry, et al., 1963
Kewley, R.; Sastry, K.V.L.N.; Winnewisser, M.; Gordy, W.,
Millimeter wave spectroscopy of unstable molecular species. I. Carbon monosulfide,
J. Chem. Phys., 1963, 39, 2856. [all data]
Lovas and Krupenie, 1974
Lovas, F.J.; Krupenie, P.H.,
Microwave spectra of molecules of astrophysical interest. VII. Carbon monoxide, carbon monosulfide, and silicon monoxide,
J. Phys. Chem. Ref. Data, 1974, 3, 245. [all data]
Lagerqvist, Westerlund, et al., 1959
Lagerqvist, A.; Westerlund, H.; Wright, C.V.; Barrow, R.F.,
Rotational analysis of the ultraviolet band system of CS,
Ark. Fys., 1959, 14, 387. [all data]
Silvers, Bergeman, et al., 1970
Silvers, S.J.; Bergeman, T.H.; Klemperer, W.,
Level crossing and double resonance on the A1Π state of CS,
J. Chem. Phys., 1970, 52, 4385. [all data]
Silvers and Chiu, 1972
Silvers, S.J.; Chiu, C.-L.,
Hanle effect measurement of the lifetime of the A1Π state of CS,
J. Chem. Phys., 1972, 56, 5663. [all data]
Smith, 1969
Smith, W.H.,
Absolute transition probabilities for some electronic states of CS, SO and S2,
J. Quant. Spectrosc. Radiat. Transfer, 1969, 9, 1191. [all data]
Felenbok, 1965
Felenbok, P.,
Franck-Condon factors and r centroids for A1Π - X1Σ+ system of CS,
Proc. Phys. Soc. London, 1965, 86, 676. [all data]
Lee and Judge, 1975
Lee, L.C.; Judge, D.L.,
CS(A1Π → X1Σ+) fluorescence from photodissociation of CS2 and OCS,
J. Chem. Phys., 1975, 63, 2782. [all data]
Narasimham and Gopal, 1966
Narasimham, N.A.; Gopal, K.S.,
Isotope shifts (C32S-C34S) in the bands of the A1Π-X1Σ+ system of CS,
Curr. Sci., 1966, 35, 485. [all data]
Chaudhry, Upadhya, et al., 1970
Chaudhry, A.K.; Upadhya, K.N.; Thakur, S.N.,
Rotational structure in the 1Π-1Σ+ transition of CS34 molecule,
Indian J. Phys., 1970, 44, 375. [all data]
Robbe and Schamps, 1972
Robbe, J.M.; Schamps, J.,
The nature of the k state of CS,
Chem. Phys. Lett., 1972, 15, 596. [all data]
Taylor, Setser, et al., 1972
Taylor, G.W.; Setser, D.W.; Coxon, J.A.,
The emission spectrum of CS(a3Π → X1Σ+) excited by interaction of CS containing molecules with metastable argon atoms,
J. Mol. Spectrosc., 1972, 44, 108. [all data]
Bell, Ng, et al., 1972
Bell, S.; Ng, T.L.; Suggitt, C.,
An emission system of CS in the vacuum and near ultraviolet,
J. Mol. Spectrosc., 1972, 44, 267. [all data]
Hildenbrand, 1972
Hildenbrand, D.L.,
Thermochemistry of the molecules CS and CS+,
Chem. Phys. Lett., 1972, 15, 379. [all data]
Hancock, Morley, et al., 1971
Hancock, G.; Morley, C.; Smith, I.W.M.,
Vibrational excitation of CO in the reaction: O + CS → CO + S,
Chem. Phys. Lett., 1971, 12, 193. [all data]
Okabe, 1972
Okabe, H.,
Photodissociation of CS2 in the vacuum ultraviolet; determination of D0° (SC-S),
J. Chem. Phys., 1972, 56, 4381. [all data]
Dibeler and Walker, 1967
Dibeler, V.H.; Walker, J.A.,
Mass-spectrometric study of photoionization. VI. O2, CO2, COS, and CS2,
J. Opt. Soc. Am., 1967, 57, 1007. [all data]
Hubin-Franskin, Locht, et al., 1976
Hubin-Franskin, M.-J.; Locht, R.; Katihabwa, J.,
Dissociative ionization of carbon disulphide in the gas phase. Heat of formation of the CS radical,
Chem. Phys. Lett., 1976, 37, 488. [all data]
Hubin-Franskin, Katihabwa, et al., 1976
Hubin-Franskin, M.-J.; Katihabwa, J.; Collin, J.E.,
Dissociative electron attachment for the carbonyl sulphide molecule in the gas phase. Heat of formation of the CS radical,
Int. J. Mass Spectrom. Ion Phys., 1976, 20, 285. [all data]
Jonathan, Morris, et al., 1972
Jonathan, N.; Morris, A.; Okuda, M.; Ross, K.J.; Smith, D.J.,
Photoelectron spectroscopy of transient species. The CS molecule,
Faraday Discuss. Chem. Soc., 1972, 54, 48. [all data]
King, Kroto, et al., 1972
King, G.H.; Kroto, H.W.; Suffolk, R.J.,
The photoelectron spectrum of a short-lived species in the decomposition products of CS2,
Chem. Phys. Lett., 1972, 13, 457. [all data]
Frost, Lee, et al., 1972
Frost, D.C.; Lee, S.T.; McDowell, C.A.,
The high resolution photoelectron spectrum of CS,
Chem. Phys. Lett., 1972, 17, 153. [all data]
Nair, Singh, et al., 1965
Nair, K.P.R.; Singh, R.B.; Rai, D.K.,
Potential-energy curves and dissociation energies of oxides and sulfides of group IV A elements,
J. Chem. Phys., 1965, 43, 3570. [all data]
McGurk, Tigleaar, et al., 1973
McGurk, J.; Tigleaar, H.L.; Rock, S.L.; Norris, C.L.; Flygare, W.H.,
Detection assignment of the microwave spectrum and the molecular Stark and Zeeman effects in CSe, and the Zeeman effect and sign of the dipole moment in CS,
J. Chem. Phys., 1973, 58, 1420. [all data]
Winnewisser and Cook, 1968
Winnewisser, G.; Cook, R.L.,
The dipole moment of carbon monosulfide,
J. Mol. Spectrosc., 1968, 28, 266. [all data]
Rosenblum, Townes, et al., 1958
Rosenblum, B.; Townes, C.H.; Geschwind, S.,
Recent determinations of atomic mass ratios by microwave spectroscopy,
Rev. Mod. Phys., 1958, 30, 409. [all data]
Horani, 1979
Horani, M.,
Unpublished cited in Huber and Herzberg, 1979, 1979, 187. [all data]
Huber and Herzberg, 1979
Huber, K.P.; Herzberg, G.,
Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules, Van Nostrand Reinhold Company, New York, 1979, 716. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Constants of diatomic molecules, References
- Symbols used in this document:
S°gas,1 bar Entropy of gas at standard conditions (1 bar) ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrH° Enthalpy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.