Cyclobutane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Glushko Thermocenter, Russian Academy of Sciences, Moscow

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
34.1550.Dorofeeva O.V., 1986Discrepancies between selected values and those calculated earlier [ Rathjens G.W., 1953] increase as the temperature increases and amount to 5.4 and 3.1 J/mol*K for S(1500 K) and Cp(1500 K), respectively.
38.19100.
42.28150.
48.84200.
64.23273.15
70.6 ± 1.5298.15
71.05300.
97.67400.
122.03500.
142.64600.
159.92700.
174.52800.
186.99900.
197.671000.
206.851100.
214.761200.
221.591300.
227.501400.
232.621500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δcliquid-2720.4 ± 0.5kJ/molCcbKaarsemaker and Coops, 1952Corresponding Δfliquid = 3.0 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcliquid-2720.5 ± 0.4kJ/molCcbCoops and Kaarsemaker, 1950Corresponding Δfliquid = 3.1 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
liquid175.15J/mol*KN/ARathjens and Gwinn, 1953DH

Constant pressure heat capacity of liquid

Cp,liquid (J/mol*K) Temperature (K) Reference Comment
106.32285.Rathjens and Gwinn, 1953T = 15 to 285 K.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing
AC - William E. Acree, Jr., James S. Chickos
CAL - James S. Chickos, William E. Acree, Jr., Joel F. Liebman, Students of Chem 202 (Introduction to the Literature of Chemistry), University of Missouri -- St. Louis

Quantity Value Units Method Reference Comment
Tboil284. ± 5.KAVGN/AAverage of 9 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus183.0KN/AKaarsemaker and Coops, 1952Uncertainty assigned by TRC = 1. K; TRC
Tfus193.KN/AWillstatter and Bruce, 1907Uncertainty assigned by TRC = 3. K; TRC
Tfus273.14KN/AWillstatter and Bruce, 1907Uncertainty assigned by TRC = 3. K; TRC
Quantity Value Units Method Reference Comment
Ttriple182.4 ± 0.6KAVGN/AAverage of 12 values; Individual data points
Quantity Value Units Method Reference Comment
Δvap23.92kJ/molN/AMajer and Svoboda, 1985 
Δvap23.2kJ/molVKaarsemaker and Coops, 1952ALS
Δvap23.3 ± 0.4kJ/molVCoops and Kaarsemaker, 1950ALS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
24.188285.66N/ARathjens and Gwinn, 1953P = 101.325 kPa; DH
24.19285.7N/AMajer and Svoboda, 1985 
25.2272.AStephenson and Malanowski, 1987Based on data from 198. to 287. K.; AC
5.781559.CRathjens and Gwinn, 1953, 2ALS
25.2270.N/ARathjens and Gwinn, 1953Based on data from 217. to 285. K. See also Boublik, Fried, et al., 1984.; AC

Entropy of vaporization

ΔvapS (J/mol*K) Temperature (K) Reference Comment
84.67285.66Rathjens and Gwinn, 1953P; DH

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference Comment
213.22 to 285.344.071431038.009-30.334Rathjens and Gwinn, 1953Coefficents calculated by NIST from author's data.

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
36.4145.BBondi, 1963AC

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
1.09182.4Domalski and Hearing, 1996AC

Entropy of fusion

ΔfusS (J/mol*K) Temperature (K) Reference Comment
39.17145.7Domalski and Hearing, 1996CAL
5.96182.4

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
5.707145.7crystaline, IIcrystaline, IRathjens and Gwinn, 1953Transition over about 120 to 145.7 K. Values represent excess over extrapolated Cp curves.; DH
1.088182.42crystaline, IliquidRathjens and Gwinn, 1953DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
39.17145.7crystaline, IIcrystaline, IRathjens and Gwinn, 1953Transition; DH
5.96182.42crystaline, IliquidRathjens and Gwinn, 1953DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
NIST MS number 107

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
PackedSqualane27.462.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane49.464.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane67.465.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm
PackedSqualane86.467.Hively and Hinton, 1968He, Chromosorb P; Column length: 15. m; Column diameter: 0.25 mm

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Dorofeeva O.V., 1986
Dorofeeva O.V., Thermodynamic properties of twenty-one monocyclic hydrocarbons, J. Phys. Chem. Ref. Data, 1986, 15, 437-464. [all data]

Rathjens G.W., 1953
Rathjens G.W., Jr., Infrared absorption spectra, structure and thermodynamic properties of cyclobutane, J. Am. Chem. Soc., 1953, 75, 5634-5642. [all data]

Kaarsemaker and Coops, 1952
Kaarsemaker, S.; Coops, J., Thermal quantities of some cycloparaffins. Part III. Results of measurements, Rec. Trav. Chim. Pays/Bas, 1952, 71, 261. [all data]

Coops and Kaarsemaker, 1950
Coops, J.; Kaarsemaker, SJ., Heat of combustion of cyclobutane, Recl. Trav. Chim. Pays-Bas, 1950, 69, 1364. [all data]

Rathjens and Gwinn, 1953
Rathjens, G.W., Jr.; Gwinn, W.D., Heat capacities and entropy of cyclobutane, J. Am. Chem. Soc., 1953, 75, 5629-5633. [all data]

Willstatter and Bruce, 1907
Willstatter, R.; Bruce, J., Chem. Ber., 1907, 40, 3979. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Rathjens and Gwinn, 1953, 2
Rathjens, G.W., Jr.; Gwinn, W.D., Heat capacities and entropy of cyclobutane, J. Am. Chem. Soc., 1953, 75, 5629-56. [all data]

Boublik, Fried, et al., 1984
Boublik, T.; Fried, V.; Hala, E., The Vapour Pressures of Pure Substances: Selected Values of the Temperature Dependence of the Vapour Pressures of Some Pure Substances in the Normal and Low Pressure Region, 2nd ed., Elsevier, New York, 1984, 972. [all data]

Bondi, 1963
Bondi, A., Heat of Siblimation of Molecular Crystals: A Catalog of Molecular Structure Increments., J. Chem. Eng. Data, 1963, 8, 3, 371-381, https://doi.org/10.1021/je60018a027 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Hively and Hinton, 1968
Hively, R.A.; Hinton, R.E., Variation of the retention index with temperature on squalane substrates, J. Gas Chromatogr., 1968, 6, 4, 203-217, https://doi.org/10.1093/chromsci/6.4.203 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Gas Chromatography, References