Sulfuryl fluoride
- Formula: F2O2S
- Molecular weight: 102.061
- IUPAC Standard InChIKey: OBTWBSRJZRCYQV-UHFFFAOYSA-N
- CAS Registry Number: 2699-79-8
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Sulfonyl fluoride; Sulfur dioxide difluoride; Sulfur fluoride oxide (SO2F2); Sulfuric oxyfluoride; Vikane; SO2F2; Fluorure de sulfuryle; Sulphuryl fluoride; UN 2191; Vikane fumigant; Sulfur difluoride dioxide; sulphuryl difluoride
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Gas phase thermochemistry data
Go To: Top, Reaction thermochemistry data, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | -758.56 | kJ/mol | Review | Chase, 1998 | Data last reviewed in June, 1971 |
Quantity | Value | Units | Method | Reference | Comment |
S°gas,1 bar | 283.61 | J/mol*K | Review | Chase, 1998 | Data last reviewed in June, 1971 |
Gas Phase Heat Capacity (Shomate Equation)
Cp° = A + B*t + C*t2 + D*t3 +
E/t2
H° − H°298.15= A*t + B*t2/2 +
C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 −
E/(2*t2) + G
Cp = heat capacity (J/mol*K)
H° = standard enthalpy (kJ/mol)
S° = standard entropy (J/mol*K)
t = temperature (K) / 1000.
View plot Requires a JavaScript / HTML 5 canvas capable browser.
Temperature (K) | 298. to 1200. | 1200. to 6000. |
---|---|---|
A | 39.63298 | 106.9192 |
B | 143.5786 | 0.630136 |
C | -117.0968 | -0.124074 |
D | 34.33537 | 0.008410 |
E | -0.635612 | -7.751404 |
F | -777.9269 | -811.2525 |
G | 290.0951 | 382.4490 |
H | -758.5592 | -758.5592 |
Reference | Chase, 1998 | Chase, 1998 |
Comment | Data last reviewed in June, 1971 | Data last reviewed in June, 1971 |
Reaction thermochemistry data
Go To: Top, Gas phase thermochemistry data, Vibrational and/or electronic energy levels, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
By formula: F- + F2O2S = (F- • F2O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 150. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
ΔrH° | 126. ± 25. | kJ/mol | Ther | Galembeck, Faigle, et al., 1978 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 115. | J/mol*K | N/A | Larson and McMahon, 1983 | gas phase; switching reaction(F-)H2O, Entropy change calculated or estimated; Arshadi, Yamdagni, et al., 1970; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 115. ± 8.4 | kJ/mol | IMRE | Larson and McMahon, 1983 | gas phase; These relative affinities are ca. 10 kcal/mol weaker than threshold values (see Wenthold and Squires, 1995) for donors greater than ca. 27 kcal/mol in free energy. This discrepancy has not yet been resolved, though the stronger value appears preferable.; B,M |
By formula: CH3+ + F2O2S = (CH3+ • F2O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 231. | kJ/mol | PHPMS | McMahon, Heinis, et al., 1988 | gas phase; switching reaction(CH3+)N2, Entropy change calculated or estimated, uses MCA(N2) = 202. kJ/mol; Foster, Williamson, et al., 1974; M |
By formula: C4H9+ + F2O2S = (C4H9+ • F2O2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 43.5 | kJ/mol | PHPMS | Sharma, Meza de Hojer, et al., 1985 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 43.5 | J/mol*K | PHPMS | Sharma, Meza de Hojer, et al., 1985 | gas phase; M |
Vibrational and/or electronic energy levels
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Takehiko Shimanouchi
Symmetry: C2ν Symmetry Number σ = 2
Sym. | No | Approximate | Selected Freq. | Infrared | Raman | Comments | ||||
---|---|---|---|---|---|---|---|---|---|---|
Species | type of mode | Value | Rating | Value | Phase | Value | Phase | |||
a1 | 1 | SO2 s-str | 1269 | C | 1269 S | gas | 1270 M | gas | ||
a1 | 2 | SF2 s-str | 848 | C | 848 S | gas | 847 S | gas | ||
a1 | 3 | SO2 scis | 544 | D | 544.3 M | gas | 543 M | gas | ||
a1 | 4 | SF2 scis | 385 | D | 384.5 VW | gas | ||||
a2 | 5 | SF2 twist | 388 | C | ia | 388 W | gas | |||
b1 | 6 | SO2 a-str | 1502 | C | 1502 S | gas | 1502 VW | gas | ||
b1 | 7 | SO2 rock | 553 | D | 552.8 M | gas | ||||
b1 | 8 | SF2 a-str | 885 | C | 885 S | gas | 883 VW | gas | ||
b1 | 9 | SO2 wag | 539 | D | 539.4 M | gas | ||||
Source: Shimanouchi, 1972
Notes
S | Strong |
M | Medium |
W | Weak |
VW | Very weak |
ia | Inactive |
C | 3~6 cm-1 uncertainty |
D | 6~15 cm-1 uncertainty |
References
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Vibrational and/or electronic energy levels, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Chase, 1998
Chase, M.W., Jr.,
NIST-JANAF Themochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]
Larson and McMahon, 1983
Larson, J.W.; McMahon, T.B.,
Strong hydrogen bonding in gas-phase anions. An ion cyclotron resonance determination of fluoride binding energetics to bronsted acids from gas-phase fluoride exchange equilibria measurements,
J. Am. Chem. Soc., 1983, 105, 2944. [all data]
Wenthold and Squires, 1995
Wenthold, P.G.; Squires, R.R.,
Bond dissociation energies of F2(-) and HF2(-). A gas-phase experimental and G2 theoretical study,
J. Phys. Chem., 1995, 99, 7, 2002, https://doi.org/10.1021/j100007a034
. [all data]
Galembeck, Faigle, et al., 1978
Galembeck, S.E.; Faigle, J.F.G.; Riveros, J.M.,
An. Acad. Brasil Cienc., 1978, 50, 1. [all data]
Arshadi, Yamdagni, et al., 1970
Arshadi, M.; Yamdagni, R.; Kebarle, P.,
Hydration of Halide Negative Ions in the Gas Phase. II. Comparison of Hydration Energies for the Alkali Positive and Halide Negative Ions,
J. Phys. Chem., 1970, 74, 7, 1475, https://doi.org/10.1021/j100702a014
. [all data]
McMahon, Heinis, et al., 1988
McMahon, T.; Heinis, T.; Nicol, G.; Hovey, J.K.; Kebarle, P.,
Methyl Cation Affinities,
J. Am. Chem. Soc., 1988, 110, 23, 7591, https://doi.org/10.1021/ja00231a002
. [all data]
Foster, Williamson, et al., 1974
Foster, M.S.; Williamson, A.D.; Beauchamp, J.L.,
Photoionization mass spectrometry of trans-azomethane,
Int. J. Mass Spectrom. Ion Phys., 1974, 15, 429. [all data]
Sharma, Meza de Hojer, et al., 1985
Sharma, D.M.S.; Meza de Hojer, S.; Kebarle, P.,
Stabilities of halonium ions from a study of gas-phase equilibria R+ + XR' = (RXR')+,
J. Am. Chem. Soc., 1985, 107, 13, 3757, https://doi.org/10.1021/ja00299a002
. [all data]
Shimanouchi, 1972
Shimanouchi, T.,
Tables of Molecular Vibrational Frequencies Consolidated Volume II,
J. Phys. Chem. Ref. Data, 1972, 6, 3, 993-1102. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Vibrational and/or electronic energy levels, References
- Symbols used in this document:
S°gas,1 bar Entropy of gas at standard conditions (1 bar) ΔfH°gas Enthalpy of formation of gas at standard conditions ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.