Cr(CO)5


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

Chromium hexacarbonyl (solution) = C5CrO5 (solution) + Carbon monoxide (solution)

By formula: C6CrO6 (solution) = C5CrO5 (solution) + CO (solution)

Quantity Value Units Method Reference Comment
Δr168.2 ± 2.5kJ/molKinSGraham and Angelici, 1967solvent: Decalin; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Cr(CO)6(solution) with PBu3(solution).
Δr159.4kJ/molKinSWerner and Prinz, 1966solvent: n-Decane+cyclohexane mixture; The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reactions of Cr(CO)6(solution) with a phosphine and an amine. The results were quoted from Graham and Angelici, 1967.

Chromium hexacarbonyl (g) = C5CrO5 (g) + Carbon monoxide (g)

By formula: C6CrO6 (g) = C5CrO5 (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr155. ± 21.kJ/molKinGFletcher and Rosenfeld, 1988 
Δr154. ± 13.kJ/molLPHPLewis, Golden, et al., 1984Temperature range: 740-820 K. The reaction enthalpy at 298 K relies on an activation energy of 147.7 kJ/mol and assumes a negligible activation barrier for product recombination.
Δr161.9kJ/molKinGPajaro, Calderazzo, et al., 1960Please also see Graham and Angelici, 1967. The reaction enthalpy and entropy were identified with the enthalpy and entropy of activation for the reaction of Cr(CO)6(g) with CO(g) Pajaro, Calderazzo, et al., 1960. The results were quoted from Graham and Angelici, 1967.

C12H16CrO5 (solution) = Heptane (solution) + C5CrO5 (solution)

By formula: C12H16CrO5 (solution) = C7H16 (solution) + C5CrO5 (solution)

Quantity Value Units Method Reference Comment
Δr40.2kJ/molN/AMorse, Parker, et al., 1989solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Cr-CO bond in Cr(CO)6, 154.0 kJ/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Cr(CO)6(solution) + n-C7H16(solution) = Cr(CO)5(n-C7H16)(solution) + CO(solution), 113.8 kJ/mol Morse, Parker, et al., 1989
Δr41.kJ/molN/AYang, Vaida, et al., 1988solvent: Heptane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Cr-CO bond in Cr(CO)6, 154.0 kJ/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Cr(CO)6(solution) + n-C7H16(solution) = Cr(CO)5(n-C7H16)(solution) + CO(solution), 112.9 kJ/mol Yang, Peters, et al., 1986

C10H12CrO5 (solution) = Pentane (solution) + C5CrO5 (solution)

By formula: C10H12CrO5 (solution) = C5H12 (solution) + C5CrO5 (solution)

Quantity Value Units Method Reference Comment
Δr37.3kJ/molN/AMorse, Parker, et al., 1989solvent: Pentane; The reaction enthalpy was derived by using the LPHP value for the enthalpy of cleavage of Cr-CO bond in Cr(CO)6, 154.0 kJ/mol Lewis, Golden, et al., 1984, toghether with a PAC value for the reaction Cr(CO)6(solution) + n-C5H12(solution) = Cr(CO)5(n-C5H12)(solution) + CO(solution), 116.7 kJ/mol Morse, Parker, et al., 1989

C7H4CrO5 (g) = C5CrO5 (g) + Ethylene (g)

By formula: C7H4CrO5 (g) = C5CrO5 (g) + C2H4 (g)

Quantity Value Units Method Reference Comment
Δr105. ± 4.kJ/molKinGMcNamara, Becher, et al., 1994The reaction enthalpy was identified with the activation energy.
Δr103. ± 10.kJ/molKinGWells, House, et al., 1994The reaction enthalpy relies on the measured activation energy and on the assumption of a negligible barrier for product recombination Wells, House, et al., 1994.

C5CrO5Xe (g) = C5CrO5 (g) + Xenon (g)

By formula: C5CrO5Xe (g) = C5CrO5 (g) + Xe (g)

Quantity Value Units Method Reference Comment
Δr37.7 ± 3.8kJ/molKinGWells and Weitz, 1992The reaction enthalpy relies on 35.1 ± 3.8 kJ/mol for the activation energy and assumes a negligible barrier for product recombination Wells and Weitz, 1992

C5H2CrO5 (g) = Hydrogen (g) + C5CrO5 (g)

By formula: C5H2CrO5 (g) = H2 (g) + C5CrO5 (g)

Quantity Value Units Method Reference Comment
Δr62.8 ± 5.4kJ/molKinGWells, House, et al., 1994The reaction enthalpy relies on the measured activation energy and on the assumption of a negligible barrier for product recombination Wells, House, et al., 1994.

C7CrF4O5 (g) = Ethene, tetrafluoro- (g) + C5CrO5 (g)

By formula: C7CrF4O5 (g) = C2F4 (g) + C5CrO5 (g)

Quantity Value Units Method Reference Comment
Δr82.4 ± 5.9kJ/molKinGWells, House, et al., 1994The reaction enthalpy relies on the measured activation energy and on the assumption of a negligible barrier for product recombination Wells, House, et al., 1994.

C5CrO5 (g) = C4CrO4 (g) + Carbon monoxide (g)

By formula: C5CrO5 (g) = C4CrO4 (g) + CO (g)

Quantity Value Units Method Reference Comment
Δr138.kJ/molKinGRayner, Ishikawa, et al., 1991 
Δr167. ± 63.kJ/molMBPSVenkataraman, Hou, et al., 1990 
Δr105. ± 21.kJ/molKinGFletcher and Rosenfeld, 1988 

C6H4CrO5 (g) = C5CrO5 (g) + Methane (g)

By formula: C6H4CrO5 (g) = C5CrO5 (g) + CH4 (g)

Quantity Value Units Method Reference Comment
Δr33.5 ± 8.4kJ/molKG/ESTWells, House, et al., 1994 

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Graham and Angelici, 1967
Graham, J.R.; Angelici, R.J., Inorg. Chem., 1967, 6, 2082. [all data]

Werner and Prinz, 1966
Werner, H.; Prinz, R., Chem. Ber., 1966, 99, 3582. [all data]

Fletcher and Rosenfeld, 1988
Fletcher, R.T.; Rosenfeld, R.N., Recombination of Cr(CO)n with CO: Kinetics and Bond Dissociation Energies, J. Am. Chem. Soc., 1988, 110, 7, 2097, https://doi.org/10.1021/ja00215a014 . [all data]

Lewis, Golden, et al., 1984
Lewis, K.E.; Golden, D.M.; Smith, G.P., Organometallic bond dissociation energies: Laser pyrolysis of Fe(CO)5, Cr(CO)6, Mo(CO)6, and W(CO)6, J. Am. Chem. Soc., 1984, 106, 3905. [all data]

Pajaro, Calderazzo, et al., 1960
Pajaro, G.; Calderazzo, F.; Ercoli, R., Gazz. Chim. Ital., 1960, 90, 1486. [all data]

Morse, Parker, et al., 1989
Morse, J.M., Jr.; Parker, G.H.; Burkey, T.J., Organometallics, 1989, 8, 2471. [all data]

Yang, Vaida, et al., 1988
Yang, G.K.; Vaida, V.; Peters, K.S., Polyhedron, 1988, 7, 1619. [all data]

Yang, Peters, et al., 1986
Yang, G.K.; Peters, K.S.; Vaida, V., Chem. Phys. Lett., 1986, 125, 566. [all data]

McNamara, Becher, et al., 1994
McNamara, B.; Becher, D.M.; Towns, M.H.; Grant, E.R., J. Phys. Chem., 1994, 98, 4622. [all data]

Wells, House, et al., 1994
Wells, J.R.; House, P.G.; Weitz, E., J. Phys. Chem., 1994, 98, 8343. [all data]

Wells and Weitz, 1992
Wells, J.R.; Weitz, E., J. Am. Chem. Soc., 1992, 114, 2783. [all data]

Rayner, Ishikawa, et al., 1991
Rayner, D.M.; Ishikawa, Y.; Brown, C.E.; Hackett, P.A., J. Chem. Phys., 1991, 94, 5471. [all data]

Venkataraman, Hou, et al., 1990
Venkataraman, B.; Hou, H.; Zhang, Z.; Chen, S.; Bandukwalla, G.; Vernon, M., J. Chem. Phys., 1990, 92, 5338. [all data]


Notes

Go To: Top, Reaction thermochemistry data, References