Sulfur hexafluoride

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Reaction thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
Δfgas-291.699kcal/molReviewChase, 1998Data last reviewed in June, 1976
Quantity Value Units Method Reference Comment
gas,1 bar69.675cal/mol*KReviewChase, 1998Data last reviewed in June, 1976

Gas Phase Heat Capacity (Shomate Equation)

Cp° = A + B*t + C*t2 + D*t3 + E/t2
H° − H°298.15= A*t + B*t2/2 + C*t3/3 + D*t4/4 − E/t + F − H
S° = A*ln(t) + B*t + C*t2/2 + D*t3/3 − E/(2*t2) + G
    Cp = heat capacity (cal/mol*K)
    H° = standard enthalpy (kcal/mol)
    S° = standard entropy (cal/mol*K)
    t = temperature (K) / 1000.

View plot Requires a JavaScript / HTML 5 canvas capable browser.

View table.

Temperature (K) 298. to 1000.1000. to 6000.
A 14.0782037.55719
B 61.075500.115684
C -60.29510-0.024074
D 21.214300.001703
E -0.384553-1.978881
F -299.4130-308.7930
G 68.83160105.9300
H -291.7000-291.7000
ReferenceChase, 1998Chase, 1998
Comment Data last reviewed in June, 1976 Data last reviewed in June, 1976

Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Henry's Law data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: John E. Bartmess

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

(Fluorine anion • Sulfur hexafluoride) + Sulfur hexafluoride = (Fluorine anion • 2Sulfur hexafluoride)

By formula: (F- • F6S) + F6S = (F- • 2F6S)

Quantity Value Units Method Reference Comment
Δr4.00 ± 0.30kcal/molTDAsHiraoka, Shimizu, et al., 1995gas phase; Entropy estimated. Gaff = +1.4 at 141 K
Quantity Value Units Method Reference Comment
Δr-1.40 ± 0.30kcal/molTDAsHiraoka, Shimizu, et al., 1995gas phase; Entropy estimated. Gaff = +1.4 at 141 K

F6S- + Sulfur hexafluoride = (F6S- • Sulfur hexafluoride)

By formula: F6S- + F6S = (F6S- • F6S)

Quantity Value Units Method Reference Comment
Δr2.30 ± 0.30kcal/molTDAsHiraoka, Shimizu, et al., 1995gas phase; Entropy estimated. Gaff=+0.37 at 141K
Quantity Value Units Method Reference Comment
Δr-3.10 ± 0.30kcal/molTDAsHiraoka, Shimizu, et al., 1995gas phase; Entropy estimated. Gaff=+0.37 at 141K

Fluorine anion + Sulfur hexafluoride = (Fluorine anion • Sulfur hexafluoride)

By formula: F- + F6S = (F- • F6S)

Quantity Value Units Method Reference Comment
Δr5.40 ± 0.30kcal/molTDAsHiraoka, Shimizu, et al., 1995gas phase
Quantity Value Units Method Reference Comment
Δr-0.6 ± 3.0kcal/molTDAsHiraoka, Shimizu, et al., 1995gas phase

C6H4N2O4- + Sulfur hexafluoride = (C6H4N2O4- • Sulfur hexafluoride)

By formula: C6H4N2O4- + F6S = (C6H4N2O4- • F6S)

Quantity Value Units Method Reference Comment
Δr<8.50kcal/molIMRBChowdhury and Kebarle, 1986gas phase
Quantity Value Units Method Reference Comment
Δr<1.90kcal/molIMRBChowdhury and Kebarle, 1986gas phase

C6H4N2O4- + Sulfur hexafluoride = (C6H4N2O4- • Sulfur hexafluoride)

By formula: C6H4N2O4- + F6S = (C6H4N2O4- • F6S)

Quantity Value Units Method Reference Comment
Δr<8.40kcal/molIMRBChowdhury and Kebarle, 1986gas phase
Quantity Value Units Method Reference Comment
Δr<1.70kcal/molIMRBChowdhury and Kebarle, 1986gas phase

F5S- + Sulfur hexafluoride = (F5S- • Sulfur hexafluoride)

By formula: F5S- + F6S = (F5S- • F6S)

Quantity Value Units Method Reference Comment
Δr<2.30kcal/molTDAsHiraoka, Shimizu, et al., 1995gas phase; No formation at 141 K

Chlorine anion + Sulfur hexafluoride = (Chlorine anion • Sulfur hexafluoride)

By formula: Cl- + F6S = (Cl- • F6S)

Quantity Value Units Method Reference Comment
Δr<1.80kcal/molIMRBChowdhury and Kebarle, 1986gas phase

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference
0.000242400.LN/A

References

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

Hiraoka, Shimizu, et al., 1995
Hiraoka, K.; Shimizu, A.; Minamitsu, A.; Nasu, M.; Fujimaki, S.; Yamabe, S., The small binding energies of the negative cluster ions: SF5-(SF6)1, SF6-(SF6)1 and F-(SF6)n (n=1 and 2), in the gas phase, Chem. Phys. Lett., 1995, 241, 5-6, 623, https://doi.org/10.1016/0009-2614(95)00676-U . [all data]

Chowdhury and Kebarle, 1986
Chowdhury, S.; Kebarle, P., Role of Binding Energies in A-.B and A.B- Complexes in the Kinetics of Gas Phase Electron Transfer Reactions:A- + B = A + B- Involving Perfluoro Compounds: SF6, C6F11CF3, J. Chem. Phys., 1986, 85, 9, 4989, https://doi.org/10.1063/1.451687 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, References