Cyclohexane, 1,2-dimethyl-, cis-

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Glushko Thermocenter, Russian Academy of Sciences, Moscow

Quantity Value Units Method Reference Comment
gas374.34J/mol*KN/AHuffman H.M., 1949 

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
39.4650.Thermodynamics Research Center, 1997p=1 bar. There is an appreciable difference, mainly at high temperatures, with values estimated earlier by a method of increments [ Beckett C.W., 1947].
64.53100.
84.76150.
103.4200.
137.7273.15
151.2298.15
152.3300.
208.3400.
259.3500.
302.2600.
338.0700.
368.1800.
393.7900.
415.51000.
434.11100.
450.01200.
463.61300.
475.41400.
485.51500.
505.21750.
519.32000.
529.62250.
537.32500.
543.22750.
547.83000.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Δcliquid-5222. ± 1.8kJ/molCcbJohnson, Prosen, et al., 1947Corresponding Δfliquid = -210. kJ/mol (simple calculation by NIST; no Washburn corrections)

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Quantity Value Units Method Reference Comment
Tboil403.0 ± 0.4KAVGN/AAverage of 21 out of 27 values; Individual data points
Quantity Value Units Method Reference Comment
Tfus221. ± 7.KAVGN/AAverage of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Ttriple223.28KN/AHuffman, Todd, et al., 1949Crystal phase 1 phase; Uncertainty assigned by TRC = 0.01 K; TRC
Ttriple223.270KN/AHuffman, 1948Crystal phase 1 phase; Uncertainty assigned by TRC = 0.05 K; TRC
Quantity Value Units Method Reference Comment
Tc606.KN/AMajer and Svoboda, 1985 
Quantity Value Units Method Reference Comment
Δvap39.74kJ/molN/AMajer and Svoboda, 1985 
Δvap39.4kJ/molN/AKusano and Saito, 1975AC
Δvap39.7kJ/molN/AReid, 1972AC
Δvap39.7 ± 0.1kJ/molCOsborne and Ginnings, 1947AC
Δvap39.71kJ/molCOsborne and Ginnings, 1947, 2ALS

Enthalpy of vaporization

ΔvapH (kJ/mol) Temperature (K) Method Reference Comment
33.47402.9N/AMajer and Svoboda, 1985 
38.0337.A,MMStephenson and Malanowski, 1987Based on data from 322. to 405. K. See also Willingham, Taylor, et al., 1945.; AC
35.5 ± 0.1370.CMcCullough, Person, et al., 1951AC
34.5 ± 0.1387.CMcCullough, Person, et al., 1951AC

Enthalpy of vaporization

ΔvapH = A exp(-βTr) (1 − Tr)β
    ΔvapH = Enthalpy of vaporization (at saturation pressure) (kJ/mol)
    Tr = reduced temperature (T / Tc)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A (kJ/mol) β Tc (K) Reference Comment
298. to 387.55.720.2899606.Majer and Svoboda, 1985 

Antoine Equation Parameters

log10(P) = A − (B / (T + C))
    P = vapor pressure (bar)
    T = temperature (K)

View plot Requires a JavaScript / HTML 5 canvas capable browser.

Temperature (K) A B C Reference
322.33 to 403.833.966541369.525-57.11Williamham, Taylor, et al., 1945

Enthalpy of fusion

ΔfusH (kJ/mol) Temperature (K) Reference Comment
1.64223.3Domalski and Hearing, 1996AC

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Reaction thermochemistry data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

3Hydrogen + o-Xylene = Cyclohexane, 1,2-dimethyl-, cis-

By formula: 3H2 + C8H10 = C8H16

Quantity Value Units Method Reference Comment
Δr-194.6 ± 0.84kJ/molChydDolliver, Gresham, et al., 1937gas phase; Reanalyzed by Cox and Pilcher, 1970, Original value = -197.7 ± 0.84 kJ/mol; At 355 °K

Cyclohexane, 1,2-dimethyl-, cis- = Cyclohexane, 1,2-dimethyl-, trans-

By formula: C8H16 = C8H16

Quantity Value Units Method Reference Comment
Δr6.7 ± 0.4kJ/molEqkMann, 1968gas phase; At 593K

Cyclohexane, 1,2-dimethyl-, trans- = Cyclohexane, 1,2-dimethyl-, cis-

By formula: C8H16 = C8H16

Quantity Value Units Method Reference Comment
Δr7. ± 1.kJ/molEqkAnfilogova, Balenkova, et al., 1974gas phase

Henry's Law data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, IR Spectrum, Mass spectrum (electron ionization), References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.0028 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.
0.0028 LN/A 
0.0028 VN/A 

IR Spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, Mass spectrum (electron ionization), References, Notes

Data compiled by: Coblentz Society, Inc.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-1104
NIST MS number 228786

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Huffman H.M., 1949
Huffman H.M., Low-temperature thermal data on eight C8H16 alkylcyclohexanes, J. Am. Chem. Soc., 1949, 71, 584-592. [all data]

Thermodynamics Research Center, 1997
Thermodynamics Research Center, Selected Values of Properties of Chemical Compounds., Thermodynamics Research Center, Texas A&M University, College Station, Texas, 1997. [all data]

Beckett C.W., 1947
Beckett C.W., The thermodynamic properties and molecular structure of cyclohexane, methylcyclohexane, ethylcyclohexane, and seven dimethylcyclohexanes, J. Am. Chem. Soc., 1947, 69, 2488-2495. [all data]

Johnson, Prosen, et al., 1947
Johnson, W.H.; Prosen, E.J.; Rossini, F.D., Heats of combustion and isomerization of the eight C8H16 alkylcyclohexanes, J. Res. NBS, 1947, 39, 49-52. [all data]

Huffman, Todd, et al., 1949
Huffman, H.M.; Todd, S.S.; Oliver, G.D., Low Temperature Thermal Data on Eight C8H16 Alkylcyclohexanes, J. Am. Chem. Soc., 1949, 71, 584. [all data]

Huffman, 1948
Huffman, H.M., Personal Commun., U. S. Bur. Mines, Bartlesville, OK, 1948. [all data]

Majer and Svoboda, 1985
Majer, V.; Svoboda, V., Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation, Blackwell Scientific Publications, Oxford, 1985, 300. [all data]

Kusano and Saito, 1975
Kusano, K.; Saito, Y., , Preprints 33rd Ann. Meeting Chem. Soc. Japan, Japan, 1975, 123. [all data]

Reid, 1972
Reid, Robert C., Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00, AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637 . [all data]

Osborne and Ginnings, 1947
Osborne, Nathan S.; Ginnings, Defoe C., Measurements of heat of vaporization and heat capacity of a number of hydrocarbons, J. RES. NATL. BUR. STAN., 1947, 39, 5, 453-17, https://doi.org/10.6028/jres.039.031 . [all data]

Osborne and Ginnings, 1947, 2
Osborne, N.S.; Ginnings, D.C., Measurements of heat of vaporization and heat capacity of a number of hydrocarbons, J. Res. NBS, 1947, 39, 453-477. [all data]

Stephenson and Malanowski, 1987
Stephenson, Richard M.; Malanowski, Stanislaw, Handbook of the Thermodynamics of Organic Compounds, 1987, https://doi.org/10.1007/978-94-009-3173-2 . [all data]

Willingham, Taylor, et al., 1945
Willingham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor pressures and boiling points of some paraffin, alkylcyclopentane, alkylcyclohexane, and alkylbenzene hydrocarbons, J. RES. NATL. BUR. STAN., 1945, 35, 3, 219-17, https://doi.org/10.6028/jres.035.009 . [all data]

McCullough, Person, et al., 1951
McCullough, J.P.; Person, W.B.; Spitzer, Ralph, The Heats of Vaporization and Vapor Heat Capacities of Some Dimethylcyclohexanes 1, J. Am. Chem. Soc., 1951, 73, 9, 4069-4071, https://doi.org/10.1021/ja01153a003 . [all data]

Williamham, Taylor, et al., 1945
Williamham, C.B.; Taylor, W.J.; Pignocco, J.M.; Rossini, F.D., Vapor Pressures and Boiling Points of Some Paraffin, Alkylcyclopentane, Alkylcyclohexane, and Alkylbenzene Hydrocarbons, J. Res. Natl. Bur. Stand. (U.S.), 1945, 35, 3, 219-244, https://doi.org/10.6028/jres.035.009 . [all data]

Domalski and Hearing, 1996
Domalski, Eugene S.; Hearing, Elizabeth D., Heat Capacities and Entropies of Organic Compounds in the Condensed Phase. Volume III, J. Phys. Chem. Ref. Data, 1996, 25, 1, 1, https://doi.org/10.1063/1.555985 . [all data]

Dolliver, Gresham, et al., 1937
Dolliver, M.a.; Gresham, T.L.; Kistiakowsky, G.B.; Vaughan, W.E., Heats of organic reactions. V. Heats of hydrogenation of various hydrocarbons, J. Am. Chem. Soc., 1937, 59, 831-841. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Mann, 1968
Mann, G., Conformation and physical data of alkanes and cyclanes. IV. Conformation energy of gauche-anticonformers, Tetrahedron, 1968, 24, 6495-65. [all data]

Anfilogova, Balenkova, et al., 1974
Anfilogova, S.N.; Balenkova, E.S.; Dmitriev, A.B., Relative stability of cis- and trans-1,2-dimethylcycloheptanes and 1,2-dimethylcyclooctanes, Neftekhimiya, 1974, 14, 673-676. [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Reaction thermochemistry data, Henry's Law data, IR Spectrum, Mass spectrum (electron ionization), References