Benzo[b]triphenylene
- Formula: C22H14
- Molecular weight: 278.3466
- IUPAC Standard InChIKey: RAASUWZPTOJQAY-UHFFFAOYSA-N
- CAS Registry Number: 215-58-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Dibenzo[a,c]anthracene; Dibenz[a,c]anthracene; 1,2:3,4-Dibenzanthracene; 1,2:3,4-Dibenzoanthracene; 1,2,3,4-Dibenzanthracene; 2,3-Benztriphenylene; Db(a,c)A
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Data at other public NIST sites:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Gas phase thermochemistry data
Go To: Top, Condensed phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
DRB - Donald R. Burgess, Jr.
GT - Glushko Thermocenter, Russian Academy of Sciences, Moscow
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°gas | 331. ± 11. | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are insufficient literature values to properly evaluate the data and insufficient information to construct thermochemical cycles or estimate values for comparison, and one must rely solely upon reported uncertainities and the quality of the measurements. In general, the evaluated uncertainty limits are on the order of (3 to 9) kJ/mol.; DRB |
Constant pressure heat capacity of gas
Cp,gas (J/mol*K) | Temperature (K) | Reference | Comment |
---|---|---|---|
57.10 | 50. | Dorofeeva O.V., 1988 | Recommended values were calculated statistically mechanically using force field approximation for polycyclic aromatic hydrocarbons to estimate the needed vibrational frequencies (see also [ Dorofeeva O.V., 1986, Moiseeva N.F., 1989]). These functions are reproduced in the reference book [ Frenkel M., 1994].; GT |
94.79 | 100. | ||
136.95 | 150. | ||
184.46 | 200. | ||
259.36 | 273.15 | ||
285.1 ± 3.5 | 298.15 | ||
287.00 | 300. | ||
383.49 | 400. | ||
464.08 | 500. | ||
528.54 | 600. | ||
579.99 | 700. | ||
621.58 | 800. | ||
655.67 | 900. | ||
683.95 | 1000. | ||
707.63 | 1100. | ||
727.62 | 1200. | ||
744.61 | 1300. | ||
759.12 | 1400. | ||
771.59 | 1500. |
Condensed phase thermochemistry data
Go To: Top, Gas phase thermochemistry data, Phase change data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Donald R. Burgess, Jr.
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔfH°solid | 184.8 ± 8.7 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are insufficient literature values to properly evaluate the data and insufficient information to construct thermochemical cycles or estimate values for comparison, and one must rely solely upon reported uncertainities and the quality of the measurements. In general, the evaluated uncertainty limits are on the order of (3 to 9) kJ/mol. |
Phase change data
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
BS - Robert L. Brown and Stephen E. Stein
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
DRB - Donald R. Burgess, Jr.
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 791.2 | K | N/A | Aldrich Chemical Company Inc., 1990 | BS |
Quantity | Value | Units | Method | Reference | Comment |
Tfus | 478.2 | K | N/A | Clar, 1949 | Uncertainty assigned by TRC = 4. K; TRC |
Tfus | 477. | K | N/A | Cook, Hieger, et al., 1932 | Uncertainty assigned by TRC = 4. K; TRC |
Tfus | 478. | K | N/A | Clar, 1929 | Uncertainty assigned by TRC = 4. K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 132.3 ± 1.8 | kJ/mol | CGC | Hanshaw, Nutt, et al., 2008 | AC |
Quantity | Value | Units | Method | Reference | Comment |
ΔsubH° | 145.9 ± 6.0 | kJ/mol | Review | Roux, Temprado, et al., 2008 | There are insufficient literature values to properly evaluate the data and insufficient information to construct thermochemical cycles or estimate values for comparison, and one must rely solely upon reported uncertainities and the quality of the measurements. In general, the evaluated uncertainty limits are on the order of (3 to 9) kJ/mol.; DRB |
ΔsubH° | 159. ± 6. | kJ/mol | V | Kruif, 1980 | ALS |
ΔsubH° | 159. ± 6. | kJ/mol | TE,ME | Kruif, 1980 | Based on data from 425. to 452. K.; AC |
Enthalpy of vaporization
ΔvapH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
97.5 | 398. | GC | Lei, Chankalal, et al., 2002 | Based on data from 323. to 473. K.; AC |
Enthalpy of sublimation
ΔsubH (kJ/mol) | Temperature (K) | Method | Reference | Comment |
---|---|---|---|---|
135. | 383. | GS | Nass, Lenoir, et al., 1995 | Based on data from 313. to 453. K.; AC |
Enthalpy of fusion
ΔfusH (kJ/mol) | Temperature (K) | Reference | Comment |
---|---|---|---|
25.82 | 553.5 | Acree, 1991 | AC |
References
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Roux, Temprado, et al., 2008
Roux, M.V.; Temprado, M.; Chickos, J.S.; Nagano, Y.,
Critically Evaluated Thermochemical Properties of Polycyclic Aromatic Hydrocarbons,
J. Phys. Chem. Ref. Data, 2008, 37, 4, 1855-1996. [all data]
Dorofeeva O.V., 1988
Dorofeeva O.V.,
Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons in the Gaseous Phase. Institute for High Temperatures, USSR Academy of Sciences, Preprint No.1-238 (in Russian), Moscow, 1988. [all data]
Dorofeeva O.V., 1986
Dorofeeva O.V.,
On calculation of thermodynamic properties of polycyclic aromatic hydrocarbons,
Thermochim. Acta, 1986, 102, 59-66. [all data]
Moiseeva N.F., 1989
Moiseeva N.F.,
Development of Benson group additivity method for estimation of ideal gas thermodynamic properties of polycyclic aromatic hydrocarbons,
Thermochim. Acta, 1989, 153, 77-85. [all data]
Frenkel M., 1994
Frenkel M.,
Thermodynamics of Organic Compounds in the Gas State, Vol. I, II, Thermodynamics Research Center, College Station, Texas, 1994, 1994. [all data]
Aldrich Chemical Company Inc., 1990
Aldrich Chemical Company Inc.,
Catalog Handbook of Fine Chemicals, Aldrich Chemical Company, Inc., Milwaukee WI, 1990, 1. [all data]
Clar, 1949
Clar, E.,
J. Chem. Soc., 1949, 2168. [all data]
Cook, Hieger, et al., 1932
Cook, J.W.; Hieger, I.; Kennaway, E.L.,
Proc. R. Soc. London, Ser. B, 1932, 111, 455. [all data]
Clar, 1929
Clar, E.,
Chem. Ber., 1929, 62, 1574. [all data]
Hanshaw, Nutt, et al., 2008
Hanshaw, William; Nutt, Marjorie; Chickos, James S.,
Hypothetical Thermodynamic Properties. Subcooled Vaporization Enthalpies and Vapor Pressures of Polyaromatic Hydrocarbons,
J. Chem. Eng. Data, 2008, 53, 8, 1903-1913, https://doi.org/10.1021/je800300x
. [all data]
Kruif, 1980
Kruif, C.G.,
Enthalpies of sublimation and vapour pressures of 11 polycyclic hydrocarbons,
J. Chem. Thermodyn., 1980, 12, 243-248. [all data]
Lei, Chankalal, et al., 2002
Lei, Ying Duan; Chankalal, Raymond; Chan, Anita; Wania, Frank,
Supercooled Liquid Vapor Pressures of the Polycyclic Aromatic Hydrocarbons,
J. Chem. Eng. Data, 2002, 47, 4, 801-806, https://doi.org/10.1021/je0155148
. [all data]
Nass, Lenoir, et al., 1995
Nass, Karen; Lenoir, Dieter; Kettrup, Antonius,
Calculation of the Thermodynamic Properties of Polycyclic Aromatic Hydrocarbons by an Incremental Procedure,
Angew. Chem. Int. Ed. Engl., 1995, 34, 16, 1735-1736, https://doi.org/10.1002/anie.199517351
. [all data]
Acree, 1991
Acree, William E.,
Thermodynamic properties of organic compounds: enthalpy of fusion and melting point temperature compilation,
Thermochimica Acta, 1991, 189, 1, 37-56, https://doi.org/10.1016/0040-6031(91)87098-H
. [all data]
Notes
Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, References
- Symbols used in this document:
Cp,gas Constant pressure heat capacity of gas Tboil Boiling point Tfus Fusion (melting) point ΔfH°gas Enthalpy of formation of gas at standard conditions ΔfH°solid Enthalpy of formation of solid at standard conditions ΔfusH Enthalpy of fusion ΔsubH Enthalpy of sublimation ΔsubH° Enthalpy of sublimation at standard conditions ΔvapH Enthalpy of vaporization ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.