3,4-Diethyl hexane
- Formula: C10H22
- Molecular weight: 142.2817
- IUPAC Standard InChIKey: VBZCRMTUDYIWIH-UHFFFAOYSA-N
- CAS Registry Number: 19398-77-7
- Chemical structure:
This structure is also available as a 2d Mol file or as a computed 3d SD file
The 3d structure may be viewed using Java or Javascript. - Other names: Hexane, 3,4-diethyl-; 3,3-Diethylhexane
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Options:
Data at NIST subscription sites:
NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.
Phase change data
Go To: Top, Henry's Law data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
AC - William E. Acree, Jr., James S. Chickos
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
Tboil | 430.7 | K | N/A | Sokolova, 1953 | Uncertainty assigned by TRC = 2. K; TRC |
Tboil | 435.9 | K | N/A | Kinney and Spliethoff, 1949 | Uncertainty assigned by TRC = 1.5 K; TRC |
Quantity | Value | Units | Method | Reference | Comment |
ΔvapH° | 11.4 | kcal/mol | N/A | Reid, 1972 | AC |
Henry's Law data
Go To: Top, Phase change data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Rolf Sander
Henry's Law constant (water solution)
kH(T) = k°H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
k°H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)
k°H (mol/(kg*bar)) | d(ln(kH))/d(1/T) (K) | Method | Reference | Comment |
---|---|---|---|---|
0.00014 | Q | N/A | missing citation give several references for the Henry's law constants but don't assign them to specific species. |
Mass spectrum (electron ionization)
Go To: Top, Phase change data, Henry's Law data, Gas Chromatography, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Spectrum
Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.
Additional Data
View image of digitized spectrum (can be printed in landscape orientation).
Due to licensing restrictions, this spectrum cannot be downloaded.
Owner | NIST Mass Spectrometry Data Center Collection (C) 2014 copyright by the U.S. Secretary of Commerce on behalf of the United States of America. All rights reserved. |
---|---|
Origin | Japan AIST/NIMC Database- Spectrum MS-IW-2981 |
NIST MS number | 227576 |
Gas Chromatography
Go To: Top, Phase change data, Henry's Law data, Mass spectrum (electron ionization), References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director
Kovats' RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Squalane | 100. | 946. | Heinzen, Soares, et al., 1999 | |
Capillary | Squalane | 60. | 945.8 | Chretien and Dubois, 1976 | |
Capillary | Squalane | 60. | 946. | Matukuma, 1969 | N2; Column length: 91.4 m; Column diameter: 0.25 mm |
Kovats' RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | OV-101 | 937. | Hayes and Pitzer, 1982 | 110. m/0.25 mm/0.20 μm, He, 1. K/min; Tstart: 35. C; Tend: 200. C |
Van Den Dool and Kratz RI, non-polar column, temperature ramp
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | SE-30 | 939.5 | Krupcík, Repka, et al., 1987 | 60. m/0.25 mm/1. μm, H2, 1. K/min; Tstart: 60. C |
Capillary | OV-101 | 937. | Hayes and Pitzer, 1981 | 108. m/0.25 mm/0.2 μm, 1. K/min; Tstart: 35. C; Tend: 200. C |
Normal alkane RI, non-polar column, isothermal
Column type | Active phase | Temperature (C) | I | Reference | Comment |
---|---|---|---|---|---|
Capillary | Apiezon L | 40. to 190. | 979. | Mann, Mühlstädt, et al., 1967 | Column length: 2. m |
Normal alkane RI, non-polar column, custom temperature program
Column type | Active phase | I | Reference | Comment |
---|---|---|---|---|
Capillary | OV-101 | 954. | Du and Liang, 2003 | Program: not specified |
Capillary | OV-101 | 946. | Du and Liang, 2003 | Program: not specified |
Capillary | Polydimethyl siloxane | 954. | Junkes, Castanho, et al., 2003 | Program: not specified |
Capillary | Polydimethyl siloxane | 946. | Junkes, Castanho, et al., 2003 | Program: not specified |
Capillary | OV-1, SE-30, Methyl silicone, SP-2100, OV-101, DB-1, etc. | 937. | Waggott and Davies, 1984 | Hydrogen; Column length: 50. m; Column diameter: 0.32 mm; Program: not specified |
References
Go To: Top, Phase change data, Henry's Law data, Mass spectrum (electron ionization), Gas Chromatography, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Sokolova, 1953
Sokolova, E.B.,
Zh. Obshch. Khim., 1953, 23, 2002. [all data]
Kinney and Spliethoff, 1949
Kinney, C.R.; Spliethoff, W.L.,
A System of Correlating Molecular Structure of Organic Compounds with Boiling Points VII. New Boiling Pts. for Certain Paraffins and Olefins,
J. Org. Chem., 1949, 14, 71. [all data]
Reid, 1972
Reid, Robert C.,
Handbook on vapor pressure and heats of vaporization of hydrocarbons and related compounds, R. C. Wilhort and B. J. Zwolinski, Texas A Research Foundation. College Station, Texas(1971). 329 pages.$10.00,
AIChE J., 1972, 18, 6, 1278-1278, https://doi.org/10.1002/aic.690180637
. [all data]
Heinzen, Soares, et al., 1999
Heinzen, V.E.F.; Soares, M.F.; Yunes, R.A.,
Semi-empirical topological method for the prediction of the chromatographic retention of cis- and trans-alkene isomers and alkanes,
J. Chromatogr. A, 1999, 849, 2, 495-506, https://doi.org/10.1016/S0021-9673(99)00530-0
. [all data]
Chretien and Dubois, 1976
Chretien, J.R.; Dubois, J.-E.,
New Perspectives in the Prediction of Kovats Indices,
J. Chromatogr., 1976, 126, 171-189, https://doi.org/10.1016/S0021-9673(01)84071-1
. [all data]
Matukuma, 1969
Matukuma, A.,
Retention indices of alkanes through C10 and alkenes through C8 and relation between boiling points and retention data,
Gas Chromatogr., Int. Symp. Anal. Instrum. Div Instrum Soc. Amer., 1969, 7, 55-75. [all data]
Hayes and Pitzer, 1982
Hayes, P.C., Jr.; Pitzer, E.W.,
Characterizing petroleum- and shale-derived jet fuel distillates via temperature-programmed Kováts indices,
J. Chromatogr., 1982, 253, 179-198, https://doi.org/10.1016/S0021-9673(01)88376-X
. [all data]
Krupcík, Repka, et al., 1987
Krupcík, J.; Repka, D.; Hevesi, T.; Garaj, J.,
Use of Kováts retention indices for characterizing solutes in complex samples separated by linear temperature-programmed capillary gas-liquid chromatography,
J. Chromatogr., 1987, 406, 117-129, https://doi.org/10.1016/S0021-9673(00)94022-6
. [all data]
Hayes and Pitzer, 1981
Hayes, P.C., Jr.; Pitzer, E.W.,
Kovats indices as a tool in characterizing hydrocarbon fuels in temperature programmed glass capillary gas chromatography. Part 1. Qualitative identification, Inhouse rpt. for Air Force Wright Aeronautical Labs., Air Force Wright Aeronautical Labs., Wright-Patterson AFB, Ohio, 1981, 75. [all data]
Mann, Mühlstädt, et al., 1967
Mann, G.; Mühlstädt, M.; Braband, J.; Döring, E.,
Konformation und physikalische daten von alkanen und cyclanen. II. Einfach und zweifach verzweigte alkane,
Tetrahedron, 1967, 23, 8, 3393-3401, https://doi.org/10.1016/S0040-4020(01)92305-1
. [all data]
Du and Liang, 2003
Du, Y.; Liang, Y.,
Data mining for seeking accurate quantitative relationship between molecular structure and GC retention indices of alkanes by projection pursuit,
Comput. Biol. Chem., 2003, 27, 3, 339-353, https://doi.org/10.1016/S1476-9271(02)00081-6
. [all data]
Junkes, Castanho, et al., 2003
Junkes, B.S.; Castanho, R.D.M.; Amboni, C.; Yunes, R.A.; Heinzen, V.E.F.,
Semiempirical Topological Index: A Novel Molecular Descriptor for Quantitative Structure-Retention Relationship Studies,
Internet Electronic Journal of Molecular Design, 2003, 2, 1, 33-49. [all data]
Waggott and Davies, 1984
Waggott, A.; Davies, I.W.,
Identification of organic pollutants using linear temperature programmed retention indices (LTPRIs) - Part II, 1984, retrieved from http://dwi.defra.gov.uk/research/completed-research/reports/dwi0383.pdf. [all data]
Notes
Go To: Top, Phase change data, Henry's Law data, Mass spectrum (electron ionization), Gas Chromatography, References
- Symbols used in this document:
Tboil Boiling point d(ln(kH))/d(1/T) Temperature dependence parameter for Henry's Law constant k°H Henry's Law constant at 298.15K ΔvapH° Enthalpy of vaporization at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.