Cesium ion (1+)


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

(Cesium ion (1+) • 2Water) + Water = (Cesium ion (1+) • 3Water)

By formula: (Cs+ • 2H2O) + H2O = (Cs+ • 3H2O)

Quantity Value Units Method Reference Comment
Δr9.7kcal/molDTMcKnight and Sawina, 1972gas phase; Entropy change is questionable; M
Δr11.2kcal/molHPMSDzidic and Kebarle, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr16.6cal/mol*KDTMcKnight and Sawina, 1972gas phase; Entropy change is questionable; M
Δr23.7cal/mol*KHPMSDzidic and Kebarle, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr4.8kcal/molHPMSBanic and Iribarne, 1985gas phase; From thermochemical cycle,switching reaction, electric fields; M

(Cesium ion (1+) • Water) + Water = (Cesium ion (1+) • 2Water)

By formula: (Cs+ • H2O) + H2O = (Cs+ • 2H2O)

Quantity Value Units Method Reference Comment
Δr11.3kcal/molDTMcKnight and Sawina, 1972gas phase; Entropy change is questionable; M
Δr12.5kcal/molHPMSDzidic and Kebarle, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr16.6cal/mol*KDTMcKnight and Sawina, 1972gas phase; Entropy change is questionable; M
Δr22.2cal/mol*KHPMSDzidic and Kebarle, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr6.0kcal/molHPMSBanic and Iribarne, 1985gas phase; electric fields; M

Cesium ion (1+) + Argon = (Cesium ion (1+) • Argon)

By formula: Cs+ + Ar = (Cs+ • Ar)

Quantity Value Units Method Reference Comment
Δr1.95kcal/molIMobGatland, 1984gas phase; M
Δr1.46kcal/molSCATTERINGGislason, 1984gas phase; M
Δr1.96kcal/molIMobViehland, 1984gas phase; M
Δr2.28kcal/molIMobTakebe, 1983gas phase; M
Δr2.3kcal/molIMobTakebe, 1983gas phase; values from this reference are consistently too high; M

Cesium ion (1+) + Xenon = (Cesium ion (1+) • Xenon)

By formula: Cs+ + Xe = (Cs+ • Xe)

Quantity Value Units Method Reference Comment
Δr2.51kcal/molIMobGatland, 1984gas phase; M
Δr2.75kcal/molSCATTERINGGislason, 1984gas phase; M
Δr2.62kcal/molIMobViehland, 1984gas phase; M
Δr2.44kcal/molIMobMason and Sharp, 1958gas phase; M
Δr3.55kcal/molIMobTakebe, 1983gas phase; values from this source are too high; M

Cesium ion (1+) + Krypton = (Cesium ion (1+) • Krypton)

By formula: Cs+ + Kr = (Cs+ • Kr)

Quantity Value Units Method Reference Comment
Δr2.79kcal/molIMobGatland, 1984gas phase; M
Δr2.33kcal/molSCATTERINGGislason, 1984gas phase; M
Δr2.72kcal/molIMobViehland, 1984gas phase; M
Δr3.1kcal/molIMobTakebe, 1983gas phase; M
Δr3.07kcal/molIMobTakebe, 1983gas phase; values form this reference are too high; M

Cesium ion (1+) + Water = (Cesium ion (1+) • Water)

By formula: Cs+ + H2O = (Cs+ • H2O)

Quantity Value Units Method Reference Comment
Δr11.9kcal/molDTMcKnight and Sawina, 1972gas phase; Entropy change is questionable; M
Δr13.7kcal/molHPMSDzidic and Kebarle, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr14.3cal/mol*KDTMcKnight and Sawina, 1972gas phase; Entropy change is questionable; M
Δr19.4cal/mol*KHPMSDzidic and Kebarle, 1970gas phase; M

Cesium ion (1+) + Sulfur dioxide = (Cesium ion (1+) • Sulfur dioxide)

By formula: Cs+ + O2S = (Cs+ • O2S)

Quantity Value Units Method Reference Comment
Δr10.8kcal/molDTMcKnight and Sawina, 1972gas phase; M
Quantity Value Units Method Reference Comment
Δr18.9cal/mol*KDTMcKnight and Sawina, 1972gas phase; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
5.2300.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

Cesium ion (1+) + Carbon dioxide = (Cesium ion (1+) • Carbon dioxide)

By formula: Cs+ + CO2 = (Cs+ • CO2)

Quantity Value Units Method Reference Comment
Δr6.2kcal/molDTMcKnight and Sawina, 1972gas phase; M
Quantity Value Units Method Reference Comment
Δr14.3cal/mol*KDTMcKnight and Sawina, 1972gas phase; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
2.4301.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

Cesium ion (1+) + neon = (Cesium ion (1+) • neon)

By formula: Cs+ + Ne = (Cs+ • Ne)

Quantity Value Units Method Reference Comment
Δr0.56kcal/molSCATTERINGGislason, 1984gas phase; M
Δr0.65kcal/molIMobTakebe, 1983gas phase; values from this reference are too high; M

(Cesium ion (1+) • 3Water) + Water = (Cesium ion (1+) • 4Water)

By formula: (Cs+ • 3H2O) + H2O = (Cs+ • 4H2O)

Quantity Value Units Method Reference Comment
Δr10.6kcal/molHPMSDzidic and Kebarle, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr25.4cal/mol*KHPMSDzidic and Kebarle, 1970gas phase; M

(Cesium ion (1+) • 2Acetonitrile) + Acetonitrile = (Cesium ion (1+) • 3Acetonitrile)

By formula: (Cs+ • 2C2H3N) + C2H3N = (Cs+ • 3C2H3N)

Quantity Value Units Method Reference Comment
Δr14.3kcal/molHPMSDavidson and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr24.0cal/mol*KHPMSDavidson and Kebarle, 1976gas phase; M

(Cesium ion (1+) • 3Acetonitrile) + Acetonitrile = (Cesium ion (1+) • 4Acetonitrile)

By formula: (Cs+ • 3C2H3N) + C2H3N = (Cs+ • 4C2H3N)

Quantity Value Units Method Reference Comment
Δr12.1kcal/molHPMSDavidson and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr27.0cal/mol*KHPMSDavidson and Kebarle, 1976gas phase; M

(Cesium ion (1+) • 4Acetonitrile) + Acetonitrile = (Cesium ion (1+) • 5Acetonitrile)

By formula: (Cs+ • 4C2H3N) + C2H3N = (Cs+ • 5C2H3N)

Quantity Value Units Method Reference Comment
Δr10.9kcal/molHPMSDavidson and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr32.9cal/mol*KHPMSDavidson and Kebarle, 1976gas phase; M

(Cesium ion (1+) • Acetonitrile) + Acetonitrile = (Cesium ion (1+) • 2Acetonitrile)

By formula: (Cs+ • C2H3N) + C2H3N = (Cs+ • 2C2H3N)

Quantity Value Units Method Reference Comment
Δr16.7kcal/molHPMSDavidson and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr21.6cal/mol*KHPMSDavidson and Kebarle, 1976gas phase; M

Cesium ion (1+) + Acetonitrile = (Cesium ion (1+) • Acetonitrile)

By formula: Cs+ + C2H3N = (Cs+ • C2H3N)

Quantity Value Units Method Reference Comment
Δr19.2kcal/molHPMSDavidson and Kebarle, 1976gas phase; M
Quantity Value Units Method Reference Comment
Δr18.6cal/mol*KHPMSDavidson and Kebarle, 1976gas phase; M

Cesium ion (1+) + helium = (Cesium ion (1+) • helium)

By formula: Cs+ + He = (Cs+ • He)

Quantity Value Units Method Reference Comment
Δr0.36kcal/molSCATTERINGGislason, 1984gas phase; M
Δr0.32kcal/molIMobMason and Sharp, 1958gas phase; M

(Cesium ion (1+) • Water • Sulfur dioxide) + Water = (Cesium ion (1+) • 2Water • Sulfur dioxide)

By formula: (Cs+ • H2O • O2S) + H2O = (Cs+ • 2H2O • O2S)

Quantity Value Units Method Reference Comment
Δr5.3kcal/molHPMSBanic and Iribarne, 1985gas phase; electeric fields; M

(Cesium ion (1+) • 2Water) + Sulfur dioxide = (Cesium ion (1+) • Sulfur dioxide • 2Water)

By formula: (Cs+ • 2H2O) + O2S = (Cs+ • O2S • 2H2O)

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
3.5300.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

(Cesium ion (1+) • Water) + Sulfur dioxide = (Cesium ion (1+) • Sulfur dioxide • Water)

By formula: (Cs+ • H2O) + O2S = (Cs+ • O2S • H2O)

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
4.3300.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

(Cesium ion (1+) • Water) + Carbon dioxide = (Cesium ion (1+) • Carbon dioxide • Water)

By formula: (Cs+ • H2O) + CO2 = (Cs+ • CO2 • H2O)

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
1.2301.HPMSBanic and Iribarne, 1985gas phase; electric fields; M

(Cesium ion (1+) • Toluene) + Toluene = (Cesium ion (1+) • 2Toluene)

By formula: (Cs+ • C7H8) + C7H8 = (Cs+ • 2C7H8)

Quantity Value Units Method Reference Comment
Δr14.7 ± 1.0kcal/molCIDTAmunugama and Rodgers, 2002RCD

(Cesium ion (1+) • Phenol) + Phenol = (Cesium ion (1+) • 2Phenol)

By formula: (Cs+ • C6H6O) + C6H6O = (Cs+ • 2C6H6O)

Quantity Value Units Method Reference Comment
Δr14.5 ± 0.8kcal/molCIDTAmunugama and Rodgers, 2002, 2RCD

(Cesium ion (1+) • Benzene, fluoro-) + Benzene, fluoro- = (Cesium ion (1+) • 2Benzene, fluoro-)

By formula: (Cs+ • C6H5F) + C6H5F = (Cs+ • 2C6H5F)

Quantity Value Units Method Reference Comment
Δr10.7 ± 1.1kcal/molCIDTAmunugama and Rodgers, 2002, 3RCD

(Cesium ion (1+) • 2Dimethyl ether) + Dimethyl ether = (Cesium ion (1+) • 3Dimethyl ether)

By formula: (Cs+ • 2C2H6O) + C2H6O = (Cs+ • 3C2H6O)

Quantity Value Units Method Reference Comment
Δr9.6 ± 2.2kcal/molCIDTRodgers and Armentrout, 2000RCD

(Cesium ion (1+) • Anisole) + Anisole = (Cesium ion (1+) • 2Anisole)

By formula: (Cs+ • C7H8O) + C7H8O = (Cs+ • 2C7H8O)

Quantity Value Units Method Reference Comment
Δr14.7 ± 0.9kcal/molCIDTAmunugama and Rodgers, 2003RCD

(Cesium ion (1+) • Ethane, 1,2-dimethoxy-) + Ethane, 1,2-dimethoxy- = (Cesium ion (1+) • 2Ethane, 1,2-dimethoxy-)

By formula: (Cs+ • C4H10O2) + C4H10O2 = (Cs+ • 2C4H10O2)

Quantity Value Units Method Reference Comment
Δr12.9 ± 1.7kcal/molCIDTRodgers and Armentrout, 2000RCD

(Cesium ion (1+) • Dimethyl ether) + Dimethyl ether = (Cesium ion (1+) • 2Dimethyl ether)

By formula: (Cs+ • C2H6O) + C2H6O = (Cs+ • 2C2H6O)

Quantity Value Units Method Reference Comment
Δr11.2 ± 1.4kcal/molCIDTRodgers and Armentrout, 2000RCD

(Cesium ion (1+) • Benzene) + Benzene = (Cesium ion (1+) • 2Benzene)

By formula: (Cs+ • C6H6) + C6H6 = (Cs+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr14.0 ± 1.9kcal/molCIDTAmicangelo and Armentrout, 2000RCD

Cesium ion (1+) + 1,4,7,10,13,16-Hexaoxacyclooctadecane = (Cesium ion (1+) • 1,4,7,10,13,16-Hexaoxacyclooctadecane)

By formula: Cs+ + C12H24O6 = (Cs+ • C12H24O6)

Quantity Value Units Method Reference Comment
Δr40.2 ± 2.2kcal/molCIDTRodgers and Armentrout, 2000RCD

Cesium ion (1+) + 15-Crown-5 = (Cesium ion (1+) • 15-Crown-5)

By formula: Cs+ + C10H20O5 = (Cs+ • C10H20O5)

Quantity Value Units Method Reference Comment
Δr23.9 ± 1.4kcal/molCIDTRodgers and Armentrout, 2000RCD

Cesium ion (1+) + Toluene = (Cesium ion (1+) • Toluene)

By formula: Cs+ + C7H8 = (Cs+ • C7H8)

Quantity Value Units Method Reference Comment
Δr15.3 ± 1.1kcal/molCIDTAmunugama and Rodgers, 2002RCD

Cesium ion (1+) + Phenol = (Cesium ion (1+) • Phenol)

By formula: Cs+ + C6H6O = (Cs+ • C6H6O)

Quantity Value Units Method Reference Comment
Δr15.7 ± 0.8kcal/molCIDTAmunugama and Rodgers, 2002, 2RCD

Cesium ion (1+) + Benzene, fluoro- = (Cesium ion (1+) • Benzene, fluoro-)

By formula: Cs+ + C6H5F = (Cs+ • C6H5F)

Quantity Value Units Method Reference Comment
Δr12.0 ± 1.2kcal/molCIDTAmunugama and Rodgers, 2002, 3RCD

Cesium ion (1+) + Anisole = (Cesium ion (1+) • Anisole)

By formula: Cs+ + C7H8O = (Cs+ • C7H8O)

Quantity Value Units Method Reference Comment
Δr15.9 ± 1.2kcal/molCIDTAmunugama and Rodgers, 2003RCD

Cesium ion (1+) + Ethane, 1,2-dimethoxy- = (Cesium ion (1+) • Ethane, 1,2-dimethoxy-)

By formula: Cs+ + C4H10O2 = (Cs+ • C4H10O2)

Quantity Value Units Method Reference Comment
Δr13.6 ± 1.2kcal/molCIDTRodgers and Armentrout, 2000RCD

Cesium ion (1+) + Dimethyl ether = (Cesium ion (1+) • Dimethyl ether)

By formula: Cs+ + C2H6O = (Cs+ • C2H6O)

Quantity Value Units Method Reference Comment
Δr13.6 ± 1.2kcal/molCIDTRodgers and Armentrout, 2000RCD

Cesium ion (1+) + 12-Crown-4 = (Cesium ion (1+) • 12-Crown-4)

By formula: Cs+ + C8H16O4 = (Cs+ • C8H16O4)

Quantity Value Units Method Reference Comment
Δr20.3 ± 2.2kcal/molCIDTRodgers and Armentrout, 2000RCD

Cesium ion (1+) + Benzene = (Cesium ion (1+) • Benzene)

By formula: Cs+ + C6H6 = (Cs+ • C6H6)

Quantity Value Units Method Reference Comment
Δr15.4 ± 1.2kcal/molCIDTAmicangelo and Armentrout, 2000RCD

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

McKnight and Sawina, 1972
McKnight, L.G.; Sawina, J.M., Drift Velocities and Interactions of Cs+ Ions with Atmospheric Gases, J. Chem. Phys., 1972, 57, 12, 5156, https://doi.org/10.1063/1.1678205 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Banic and Iribarne, 1985
Banic, C.M.; Iribarne, J.V., Equilibrium Constants for Clustering of Neutral Molecules about Gaseous Ions, J. Chem. Phys., 1985, 83, 12, 6432, https://doi.org/10.1063/1.449543 . [all data]

Gatland, 1984
Gatland, I.R., Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Gislason, 1984
Gislason, E.A., Quoted in I. R. Gatland in Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Viehland, 1984
Viehland, L.A., Interaction Potentials for Li+ - Rare - Gas Systems, Chem. Phys., 1984, 78, 2, 279, https://doi.org/10.1016/0301-0104(83)85114-3 . [all data]

Takebe, 1983
Takebe, M., The Generalized Mobility Curve for Alkali Ions in Rare Gases: Clustering Reactions and Mobility Curves, J. Chem. Phys., 1983, 78, 12, 7223, https://doi.org/10.1063/1.444763 . [all data]

Mason and Sharp, 1958
Mason, E.A.; Sharp, H.W., Mobility of gaseous lons in weak electric fields, Ann. Phys., 1958, 4, 3, 233, https://doi.org/10.1016/0003-4916(58)90049-6 . [all data]

Davidson and Kebarle, 1976
Davidson, W.R.; Kebarle, P., Ionic Solvation by Aprotic Solvents. Gas Phase Solvation of the Alkali Ions by Acetonitrile, J. Am. Chem. Soc., 1976, 98, 20, 6125, https://doi.org/10.1021/ja00436a010 . [all data]

Amunugama and Rodgers, 2002
Amunugama, R.; Rodgers, M.T., Influence of substituents on cation-pi interactions. 1. Absolute binding energies of alkali metal cation-toluene complexes determined by threshold collision-induced dissociation and theoretical studies, J. Phys. Chem. A, 2002, 106, 22, 5529, https://doi.org/10.1021/jp014307b . [all data]

Amunugama and Rodgers, 2002, 2
Amunugama, R.; Rodgers, M.T., The influence of substituents on cation-pi interactions. 4. Absolute binding energies of alkali metal cation - Phenol complexes determined by threshold collision-induced dissociation and theoretical studies, J. Phys. Chem. A, 2002, 106, 42, 9718, https://doi.org/10.1021/jp0211584 . [all data]

Amunugama and Rodgers, 2002, 3
Amunugama, R.; Rodgers, M.T., Influence of substituents on cation-pi interactions. 2. Absolute binding energies of alkali metal cation-fluorobenzene complexes determined by threshold collision-induced dissociation and theoretical studies, J. Phys. Chem. A, 2002, 106, 39, 9092, https://doi.org/10.1021/jp020459a . [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Amunugama and Rodgers, 2003
Amunugama, R.; Rodgers, M.T., Influence of substituents on cation-pi interactions - 5. Absolute binding energies of alkali metal cation-anisole complexes determined by threshold collision-induced dissociation and theoretical studies, Int. J. Mass Spectrom., 2003, 222, 1-3, 431, https://doi.org/10.1016/S1387-3806(02)00945-4 . [all data]

Amicangelo and Armentrout, 2000
Amicangelo, J.C.; Armentrout, P.B., Absolute Binding Energies of Alkali-Metal Cation Complexes with Benzene Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, J. Phys. Chem. A, 2000, 104, 48, 11420, https://doi.org/10.1021/jp002652f . [all data]


Notes

Go To: Top, Reaction thermochemistry data, References