Copper ion (1+)
- Formula: Cu+
- Molecular weight: 63.545
- IUPAC Standard InChIKey: VMQMZMRVKUZKQL-UHFFFAOYSA-N
- CAS Registry Number: 17493-86-6
- Chemical structure:
This structure is also available as a 2d Mol file - Other names: Copper cation
- Permanent link for this species. Use this link for bookmarking this species for future reference.
- Information on this page:
- Other data available:
- Options:
Ion clustering data
Go To: Top, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.
Clustering reactions
By formula: Cu+ + CH3 = (Cu+ • CH3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 124. ± 7.1 | kJ/mol | CIDT | Georgiadis, Fisher, et al., 1989 | RCD |
By formula: Cu+ + CH4O = (Cu+ • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 56.1 | kJ/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 25. | kJ/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
By formula: (Cu+ • CH4O) + CH4O = (Cu+ • 2CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 57.7 | kJ/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 26. | kJ/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
By formula: Cu+ + CO = (Cu+ • CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
149. (+6.7,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Cu+ • CO) + CO = (Cu+ • 2CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
172. (+3.,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Cu+ • 2CO) + CO = (Cu+ • 3CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
75. (+4.,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Cu+ • 3CO) + CO = (Cu+ • 4CO)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
53. (+3.,-0.) | CID | Meyer, Chen, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: Cu+ + CS = (Cu+ • CS)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 234. ± 10. | kJ/mol | CIDT | Rodgers and Armentrout, 2000 | RCD |
By formula: Cu+ + C2H2 = (Cu+ • C2H2)
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
10. (+10.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
By formula: Cu+ + C2H3N = (Cu+ • C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 238. ± 3. | kJ/mol | CIDT | Vitale, 2001 | CH3CN is fifth ligand; RCD |
By formula: (Cu+ • C2H3N) + C2H3N = (Cu+ • 2C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 238. ± 9.2 | kJ/mol | CIDT | Vitale, 2001 | RCD |
By formula: (Cu+ • 2C2H3N) + C2H3N = (Cu+ • 3C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 84. ± 2. | kJ/mol | CIDT | Vitale, 2001 | RCD |
By formula: (Cu+ • 3C2H3N) + C2H3N = (Cu+ • 4C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 67. ± 2. | kJ/mol | CIDT | Vitale, 2001 | RCD |
By formula: (Cu+ • 4C2H3N) + C2H3N = (Cu+ • 5C2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.8 ± 4.2 | kJ/mol | CIDT | Vitale, 2001 | RCD |
By formula: Cu+ + C2H4 = (Cu+ • C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 176. ± 14. | kJ/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
95. (+11.,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; ΔrH>=, guided ion beam CID; M |
By formula: (Cu+ • C2H4) + C2H4 = (Cu+ • 2C2H4)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 174. ± 13. | kJ/mol | CIDT | Sievers, Jarvis, et al., 1998 | RCD |
By formula: Cu+ + C2H6O = (Cu+ • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 185. ± 12. | kJ/mol | CIDT | Koizumi, 2001 | RCD |
By formula: (Cu+ • C2H6O) + C2H6O = (Cu+ • 2C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 193. ± 7.9 | kJ/mol | CIDT | Koizumi, 2001 | RCD |
By formula: (Cu+ • 2C2H6O) + C2H6O = (Cu+ • 3C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 54.8 ± 4.2 | kJ/mol | CIDT | Koizumi, 2001 | RCD |
By formula: (Cu+ • 3C2H6O) + C2H6O = (Cu+ • 4C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 45. ± 10. | kJ/mol | CIDT | Koizumi, 2001 | RCD |
By formula: Cu+ + C3H6O = (Cu+ • C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 199. ± 4.2 | kJ/mol | CIDT | Chu, 2002 | RCD |
ΔrH° | 62.3 | kJ/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 31. | kJ/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
By formula: (Cu+ • C3H6O) + C3H6O = (Cu+ • 2C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 210. ± 7.1 | kJ/mol | CIDT | Chu, 2002 | RCD |
ΔrH° | 64.9 | kJ/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 33. | kJ/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
By formula: (Cu+ • 2C3H6O) + C3H6O = (Cu+ • 3C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 64. ± 2. | kJ/mol | CIDT | Chu, 2002 | RCD |
By formula: (Cu+ • 3C3H6O) + C3H6O = (Cu+ • 4C3H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 61.1 ± 5.0 | kJ/mol | CIDT | Chu, 2002 | RCD |
By formula: Cu+ + C4H4N2 = (Cu+ • C4H4N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 249. ± 9.6 | kJ/mol | CIDT | Amunugama and Rodgers, 2001 | RCD |
By formula: Cu+ + C4H5N = (Cu+ • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 247. | kJ/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: (Cu+ • C4H5N) + C4H5N = (Cu+ • 2C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 184. | kJ/mol | RAK | Gapeev and Yang, 2000 | RCD |
By formula: Cu+ + C4H10O2 = (Cu+ • C4H10O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 264. ± 7.9 | kJ/mol | CIDT | Koizumi, 2001, 2 | RCD |
By formula: (Cu+ • C4H10O2) + C4H10O2 = (Cu+ • 2C4H10O2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 180. ± 5.9 | kJ/mol | CIDT | Koizumi, 2001, 2 | RCD |
By formula: Cu+ + C5H5N = (Cu+ • C5H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 246. ± 10. | kJ/mol | CIDT | Rodgers, Stanley, et al., 2000 | RCD |
By formula: Cu+ + C5H5N5 = (Cu+ • C5H5N5)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 294. ± 11. | kJ/mol | CIDT | Rodgers and Armentrout, 2002 | RCD |
By formula: Cu+ + C6H6 = (Cu+ • C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 218. ± 10. | kJ/mol | CIDT | Meyer, Khan, et al., 1995 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
218. (+9.6,-0.) | CID | Meyer, Khan, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: (Cu+ • C6H6) + C6H6 = (Cu+ • 2C6H6)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 155. ± 12. | kJ/mol | CIDT | Meyer, Khan, et al., 1995 | RCD |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
155. (+12.,-0.) | CID | Meyer, Khan, et al., 1995 | gas phase; guided ion beam CID; M |
By formula: Cu+ + H2O = (Cu+ • H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 49.8 | kJ/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
ΔrH° | 150. ± 10. | kJ/mol | CID | Magnera, David, et al., 1989 | gas phase; M |
ΔrH° | 150. ± 10. | kJ/mol | CID | Magnera, David, et al., 1989, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 18. | kJ/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
157. (+7.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Cu+ • H2O) + H2O = (Cu+ • 2H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 58.2 | kJ/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
ΔrH° | 160. ± 10. | kJ/mol | CID | Magnera, David, et al., 1989, 2 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | N/A | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 27. | kJ/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Entropy change calculated or estimated, Cu+ from laser desorption; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
170. (+7.1,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Cu+ • 2H2O) + H2O = (Cu+ • 3H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70. ± 10. | kJ/mol | CID | Magnera, David, et al., 1989, 2 | gas phase; M |
ΔrH° | 68.6 | kJ/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 100. | J/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
56.9 (+7.9,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Cu+ • 3H2O) + H2O = (Cu+ • 4H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 60. ± 10. | kJ/mol | CID | Magnera, David, et al., 1989, 2 | gas phase; M |
ΔrH° | 69.9 | kJ/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 126. | J/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
Enthalpy of reaction
ΔrH° (kJ/mol) | T (K) | Method | Reference | Comment |
---|---|---|---|---|
54.0 (+4.2,-0.) | CID | Armentrout and Kickel, 1994 | gas phase; guided ion beam CID; M |
By formula: (Cu+ • 4H2O) + H2O = (Cu+ • 5H2O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 58.6 | kJ/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 122. | J/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
By formula: Cu+ + H3N = (Cu+ • H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 237. ± 14. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
By formula: (Cu+ • H3N) + H3N = (Cu+ • 2H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 246. ± 10. | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
By formula: (Cu+ • 2H3N) + H3N = (Cu+ • 3H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 46.9 ± 5.9 | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 58.6 | kJ/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 99.6 | J/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
By formula: (Cu+ • 3H3N) + H3N = (Cu+ • 4H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 41.8 ± 5.9 | kJ/mol | CIDT | Walter and Armentrout, 1998 | RCD |
ΔrH° | 53.6 | kJ/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 120. | J/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
By formula: (Cu+ • 4H3N) + H3N = (Cu+ • 5H3N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 53.6 | kJ/mol | HPMS | Holland and Castleman, 1982 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 138. | J/mol*K | HPMS | Holland and Castleman, 1982 | gas phase; M |
By formula: Cu+ + Kr = (Cu+ • Kr)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 24. | kJ/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Cu+ from laser desrption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 78.7 | J/mol*K | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Cu+ from laser desrption; M |
By formula: Cu+ + N2 = (Cu+ • N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 26. | kJ/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Cu+ from laser desrption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 67. | J/mol*K | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Cu+ from laser desrption; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 5.9 | kJ/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Cu+ from laser desrption; M |
By formula: (Cu+ • N2) + N2 = (Cu+ • 2N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 12. | kJ/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Cu+ from laser desorption, equilibrium?; M |
By formula: (Cu+ • 2N2) + N2 = (Cu+ • 3N2)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrG° | 10. | kJ/mol | HPMS | El-Shall, Schriver, et al., 1989 | gas phase; Cu+ from laser desorption; M |
References
Go To: Top, Ion clustering data, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Georgiadis, Fisher, et al., 1989
Georgiadis, R.; Fisher, E.R.; Armentrout, P.B.,
Neutral and Ionic Metal-Hydrogen and Metal-Carbon Bond Energies: Reactions of Co+, Ni+, and Cu+ with Ethane, Propane, Methylpropane, and Dimethylpropane,
J. Am. Chem. Soc., 1989, 111, 12, 4251, https://doi.org/10.1021/ja00194a016
. [all data]
El-Shall, Schriver, et al., 1989
El-Shall, M.S.; Schriver, K.E.; Whetten, R.L.; Meot-Ner (Mautner), M.,
Ion/Molecule Clustering Thermochemistry by Laser Ionization High - Pressure Mass Spectrometry,
J. Phys. Chem., 1989, 93, 24, 7969, https://doi.org/10.1021/j100361a002
. [all data]
Meyer, Chen, et al., 1995
Meyer, F.; Chen, Y.M.; Armentrout, P.B.,
Sequential Bond Energies of Cu(CO)x+ and Ag(CO)x+ (x = 1-4),
J. Am. Chem. Soc., 1995, 117, 14, 4071, https://doi.org/10.1021/ja00119a023
. [all data]
Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B.,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation,
Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data]
Armentrout and Kickel, 1994
Armentrout, P.B.; Kickel, B.L.,
Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed, 1994. [all data]
Vitale, 2001
Vitale, G.,
Solvation of Copper Ions by Acetonitrile. Structures and Sequential Binding Energies of Cu+(CH3CN)x, x=1-5 From Collision-Induced Dissociation and Theoretical Studies,
J. Phys. Chem. A, 2001, 105, 50, 11351, https://doi.org/10.1021/jp0132432
. [all data]
Sievers, Jarvis, et al., 1998
Sievers, M.R.; Jarvis, L.M.; Armentrout, P.B.,
Transition Metal Ethene Bonds: Thermochemistry of M+(C2H4)n (M=Ti-Cu, n=1 and 2) Complexes,
J. Am. Chem. Soc., 1998, 120, 8, 1891, https://doi.org/10.1021/ja973834z
. [all data]
Koizumi, 2001
Koizumi, H.,
Collision-Induced Dissociation and Theoretical Studies of Cu+-Dimethyl Ether Complexes,
J.Phys. Chem. A, 2001, 105, 11, 2444, https://doi.org/10.1021/jp003509p
. [all data]
Chu, 2002
Chu, Y.,
Solvation of Copper Ions by Acetone. Structures and Sequential Binding Energies of Cu+(acetone)x, x=1-4 From Collision-Induced Dissociation and Theoretical Studies,
J. Am. Soc. Mass Spectrom., 2002, 13, 5, 453, https://doi.org/10.1016/S1044-0305(02)00355-0
. [all data]
Amunugama and Rodgers, 2001
Amunugama, R.; Rodgers, M.T.,
Periodic Trends in the Binding of Metal Ions to Pyrimidine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory,
J. Phys. Chem. A, 2001, 105, 43, 9883, https://doi.org/10.1021/jp010663i
. [all data]
Gapeev and Yang, 2000
Gapeev, A.; Yang, C.-N.,
Binding Energies of Gas-Phase Ions with Pyrrole. Experimental and Quantum Chemical Results,
J. Phys. Chem. A, 2000, 104, 14, 3246, https://doi.org/10.1021/jp992627d
. [all data]
Koizumi, 2001, 2
Koizumi, H.,
Collision-Induced Dissociation and Theoretical Studies of Cu+-Dimethoxyethane Complexes,
J. Am. Soc. Mass Spectrom., 2001, 12, 5, 480, https://doi.org/10.1016/S1044-0305(01)00242-2
. [all data]
Rodgers, Stanley, et al., 2000
Rodgers, M.T.; Stanley, J.R.; Amunugama, R.,
Periodic Trends in the Binding of Metal Ions to Pyridine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory,
J. Am. Chem. Soc., 2000, 122, 44, 10969, https://doi.org/10.1021/ja0027923
. [all data]
Rodgers and Armentrout, 2002
Rodgers, M.T.; Armentrout, P.B.,
Influence of d orbital occupation on the binding of metal ions to adenine,
J. Am. Chem. Soc., 2002, 124, 11, 2678, https://doi.org/10.1021/ja011278+
. [all data]
Meyer, Khan, et al., 1995
Meyer, F.; Khan, F.A.; Armentrout, P.B.,
Thermochemistry of Transition Metal Benzene complexes: Binding energies of M(C6H6)x+ (x = 1,2) for M = Ti to Cu,
J. Am. Chem. Soc., 1995, 117, 38, 9740, https://doi.org/10.1021/ja00143a018
. [all data]
Magnera, David, et al., 1989
Magnera, T.F.; David, D.E.; Michl, J.,
Gas -Phase Water and Hydroxyl Binding Energies for Monopoisitive First - Row Transition - Metal Ions,
J. Am. Chem. Soc., 1989, 111, 11, 4101, https://doi.org/10.1021/ja00193a051
. [all data]
Magnera, David, et al., 1989, 2
Magnera, T.F.; David, D.E.; Stulik, D.; Orth, R.G.; Jorikman, H.T.; Michl, J.,
Production of Hydrated Metal Ions by Fast Ion or Atom Beam Sputtering. Collision - Induced Dissociation and Successive Hydration Energies of Gaseous Cu+ with 1 - 4 Water Molecules,
J. Am. Chem. Soc., 1989, 111, 14, 5036, https://doi.org/10.1021/ja00196a003
. [all data]
Holland and Castleman, 1982
Holland, P.M.; Castleman, A.W.,
The Thermochemical Properties of Gas - Phase Transition Metal Ion Complexes,
J. Chem. Phys., 1982, 76, 8, 4195, https://doi.org/10.1063/1.443497
. [all data]
Walter and Armentrout, 1998
Walter, D.; Armentrout, P.B.,
Periodic Trends in Chemical Reactivity: Reactions of Sc+, Y+, La+, and Lu+ with H2, D2 and HD,
J. Am. Chem. Soc., 1998, 120, 13, 3176, https://doi.org/10.1021/ja973202c
. [all data]
Notes
Go To: Top, Ion clustering data, References
- Symbols used in this document:
T Temperature ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.