Lithium ion (1+)


Gas phase thermochemistry data

Go To: Top, Ion clustering data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Quantity Value Units Method Reference Comment
gas,1 bar31.793cal/mol*KReviewChase, 1998Data last reviewed in December, 1983

Ion clustering data

Go To: Top, Gas phase thermochemistry data, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. Searches may be limited to ion clustering reactions. A general reaction search form is also available.

Clustering reactions

Lithium ion (1+) + Argon = (Lithium ion (1+) • Argon)

By formula: Li+ + Ar = (Li+ • Ar)

Quantity Value Units Method Reference Comment
Δr7. ± 1.kcal/molAVGN/AAverage of 4 out of 6 values; Individual data points
Quantity Value Units Method Reference Comment
Δr7.cal/mol*KDTMcKnight and Sawina, 1973gas phase; ΔrS approximate; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
1.4294.IMobCassidy and Elford, 1985gas phase; M
1.9319.DTKeller, Beyer, et al., 1973gas phase; LOW E/N; M
2.6215.DTMcKnight and Sawina, 1973gas phase; ΔrS approximate; M

Lithium ion (1+) + Hydrogen cyanide = (Lithium ion (1+) • Hydrogen cyanide)

By formula: Li+ + CHN = (Li+ • CHN)

Quantity Value Units Method Reference Comment
Δr36.4kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Δr36.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr25.cal/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Quantity Value Units Method Reference Comment
Δr28.kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M

Lithium ion (1+) + Methylene chloride = (Lithium ion (1+) • Methylene chloride)

By formula: Li+ + CH2Cl2 = (Li+ • CH2Cl2)

Quantity Value Units Method Reference Comment
Δr29.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 interpolated; M

Lithium ion (1+) + Difluoromethane = (Lithium ion (1+) • Difluoromethane)

By formula: Li+ + CH2F2 = (Li+ • CH2F2)

Quantity Value Units Method Reference Comment
Δr26.5kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 interpolated; M

Lithium ion (1+) + 2H-Tetrazole = (Lithium ion (1+) • 2H-Tetrazole)

By formula: Li+ + CH2N4 = (Li+ • CH2N4)

Quantity Value Units Method Reference Comment
Δr36.1 ± 1.7kcal/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + Formaldehyde = (Lithium ion (1+) • Formaldehyde)

By formula: Li+ + CH2O = (Li+ • CH2O)

Quantity Value Units Method Reference Comment
Δr36.0kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Δr36.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Quantity Value Units Method Reference Comment
Δr28.2kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M

Lithium ion (1+) + Chloromethane = (Lithium ion (1+) • Chloromethane)

By formula: Li+ + CH3Cl = (Li+ • CH3Cl)

Quantity Value Units Method Reference Comment
Δr25.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 interpolated; M

Lithium ion (1+) + Methyl fluoride = (Lithium ion (1+) • Methyl fluoride)

By formula: Li+ + CH3F = (Li+ • CH3F)

Quantity Value Units Method Reference Comment
Δr31.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 interpolated; M

Lithium ion (1+) + Formamide = (Lithium ion (1+) • Formamide)

By formula: Li+ + CH3NO = (Li+ • CH3NO)

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
37.5373.CIDCHerreros, Gal, et al., 1999RCD

Lithium ion (1+) + Methane, nitro- = (Lithium ion (1+) • Methane, nitro-)

By formula: Li+ + CH3NO2 = (Li+ • CH3NO2)

Quantity Value Units Method Reference Comment
Δr39.5kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970; M

Lithium ion (1+) + Methyl Alcohol = (Lithium ion (1+) • Methyl Alcohol)

By formula: Li+ + CH4O = (Li+ • CH4O)

Quantity Value Units Method Reference Comment
Δr36.8 ± 1.9kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr38.1kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H20, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Δr38.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H20, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Quantity Value Units Method Reference Comment
Δr30.3kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H20, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M

Lithium ion (1+) + Methylamine = (Lithium ion (1+) • Methylamine)

By formula: Li+ + CH5N = (Li+ • CH5N)

Quantity Value Units Method Reference Comment
Δr41.1kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Quantity Value Units Method Reference Comment
Δr26.cal/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Quantity Value Units Method Reference Comment
Δr33.3kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M

Lithium ion (1+) + Carbon monoxide = (Lithium ion (1+) • Carbon monoxide)

By formula: Li+ + CO = (Li+ • CO)

Quantity Value Units Method Reference Comment
Δr13.1 ± 3.1kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr13.1 ± 2.9kcal/molCIDTWalter, Sievers, et al., 1998RCD

(Lithium ion (1+) • Carbon monoxide) + Carbon monoxide = (Lithium ion (1+) • 2Carbon monoxide)

By formula: (Li+ • CO) + CO = (Li+ • 2CO)

Quantity Value Units Method Reference Comment
Δr8.6 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr8.6 ± 1.0kcal/molCIDTWalter, Sievers, et al., 1998RCD

(Lithium ion (1+) • 2Carbon monoxide) + Carbon monoxide = (Lithium ion (1+) • 3Carbon monoxide)

By formula: (Li+ • 2CO) + CO = (Li+ • 3CO)

Quantity Value Units Method Reference Comment
Δr8.4 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr8.4 ± 1.0kcal/molCIDTWalter, Sievers, et al., 1998RCD

Lithium ion (1+) + Acetonitrile = (Lithium ion (1+) • Acetonitrile)

By formula: Li+ + C2H3N = (Li+ • C2H3N)

Quantity Value Units Method Reference Comment
Δr43.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 interpolated; M

Lithium ion (1+) + C2H3N3 = (Lithium ion (1+) • C2H3N3)

By formula: Li+ + C2H3N3 = (Li+ • C2H3N3)

Quantity Value Units Method Reference Comment
Δr32.5 ± 1.7kcal/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + 1H-1,2,4-Triazole = (Lithium ion (1+) • 1H-1,2,4-Triazole)

By formula: Li+ + C2H3N3 = (Li+ • C2H3N3)

Quantity Value Units Method Reference Comment
Δr45.7 ± 1.9kcal/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + Acetaldehyde = (Lithium ion (1+) • Acetaldehyde)

By formula: Li+ + C2H4O = (Li+ • C2H4O)

Quantity Value Units Method Reference Comment
Δr41.3kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, Keesee and Castleman, 1986 from Berman and Beauchamp, 1986; Dzidic and Kebarle, 1970 interpolated; M

Lithium ion (1+) + Acetic acid = (Lithium ion (1+) • Acetic acid)

By formula: Li+ + C2H4O2 = (Li+ • C2H4O2)

Quantity Value Units Method Reference Comment
Δr41.5kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 interpolated; M

Lithium ion (1+) + 1,3,2-Dioxathiolane, 2-oxide = (Lithium ion (1+) • 1,3,2-Dioxathiolane, 2-oxide)

By formula: Li+ + C2H4O3S = (Li+ • C2H4O3S)

Quantity Value Units Method Reference Comment
Δr47.6kcal/molCIDCBuncel, Decouzon, et al., 1997RCD

Lithium ion (1+) + Ethane, fluoro- = (Lithium ion (1+) • Ethane, fluoro-)

By formula: Li+ + C2H5F = (Li+ • C2H5F)

Quantity Value Units Method Reference Comment
Δr34.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Lithium ion (1+) + Formamide, N-methyl- = (Lithium ion (1+) • Formamide, N-methyl-)

By formula: Li+ + C2H5NO = (Li+ • C2H5NO)

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
39.6373.CIDCHerreros, Gal, et al., 1999RCD

Lithium ion (1+) + Ethanol = (Lithium ion (1+) • Ethanol)

By formula: Li+ + C2H6O = (Li+ • C2H6O)

Quantity Value Units Method Reference Comment
Δr39.2 ± 1.9kcal/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + Dimethyl ether = (Lithium ion (1+) • Dimethyl ether)

By formula: Li+ + C2H6O = (Li+ • C2H6O)

Quantity Value Units Method Reference Comment
Δr39.4 ± 2.6kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr39.5kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Δr39.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr27.cal/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr31.3kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
39.4 (+2.5,-0.) CIDMore, Gledening, et al., 1996gas phase; guided ion beam CID; M

(Lithium ion (1+) • Dimethyl ether) + Dimethyl ether = (Lithium ion (1+) • 2Dimethyl ether)

By formula: (Li+ • C2H6O) + C2H6O = (Li+ • 2C2H6O)

Quantity Value Units Method Reference Comment
Δr28.9 ± 1.4kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
31.1 (+0.9,-0.) CIDMore, Gledening, et al., 1996gas phase; guided ion beam CID; M

(Lithium ion (1+) • 2Dimethyl ether) + Dimethyl ether = (Lithium ion (1+) • 3Dimethyl ether)

By formula: (Li+ • 2C2H6O) + C2H6O = (Li+ • 3C2H6O)

Quantity Value Units Method Reference Comment
Δr21.3 ± 1.9kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
26.3 (+1.4,-0.) CIDMore, Gledening, et al., 1996gas phase; guided ion beam CID; M

(Lithium ion (1+) • 3Dimethyl ether) + Dimethyl ether = (Lithium ion (1+) • 4Dimethyl ether)

By formula: (Li+ • 3C2H6O) + C2H6O = (Li+ • 4C2H6O)

Quantity Value Units Method Reference Comment
Δr16.3 ± 2.4kcal/molCIDTRodgers and Armentrout, 2000RCD

Enthalpy of reaction

ΔrH° (kcal/mol) T (K) Method Reference Comment
22.8 (+1.6,-0.) CIDMore, Gledening, et al., 1996gas phase; guided ion beam CID; M

Lithium ion (1+) + Dimethyl sulfone = (Lithium ion (1+) • Dimethyl sulfone)

By formula: Li+ + C2H6O2S = (Li+ • C2H6O2S)

Quantity Value Units Method Reference Comment
Δr48.5kcal/molCIDCBuncel, Decouzon, et al., 1997RCD

Lithium ion (1+) + Dimethyl sulfide = (Lithium ion (1+) • Dimethyl sulfide)

By formula: Li+ + C2H6S = (Li+ • C2H6S)

Quantity Value Units Method Reference Comment
Δr32.8kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Lithium ion (1+) + Dimethylamine = (Lithium ion (1+) • Dimethylamine)

By formula: Li+ + C2H7N = (Li+ • C2H7N)

Quantity Value Units Method Reference Comment
Δr42.2kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr27.cal/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr34.1kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M

Lithium ion (1+) + 1,3,5-Triazine = (Lithium ion (1+) • 1,3,5-Triazine)

By formula: Li+ + C3H3N3 = (Li+ • C3H3N3)

Quantity Value Units Method Reference Comment
Δr30.4 ± 3.0kcal/molCIDTAmunugama and Rodgers, 2000RCD

Lithium ion (1+) + 1H-Pyrazole = (Lithium ion (1+) • 1H-Pyrazole)

By formula: Li+ + C3H4N2 = (Li+ • C3H4N2)

Quantity Value Units Method Reference Comment
Δr44.7 ± 4.0kcal/molCIDTHuang and Rodgers, 2002RCD

Lithium ion (1+) + 1H-Imidazole = (Lithium ion (1+) • 1H-Imidazole)

By formula: Li+ + C3H4N2 = (Li+ • C3H4N2)

Quantity Value Units Method Reference Comment
Δr50.4 ± 2.3kcal/molCIDTHuang and Rodgers, 2002RCD

Lithium ion (1+) + Propyne = (Lithium ion (1+) • Propyne)

By formula: Li+ + C3H4 = (Li+ • C3H4)

Quantity Value Units Method Reference Comment
Δr28.5kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Lithium ion (1+) + Acetone = (Lithium ion (1+) • Acetone)

By formula: Li+ + C3H6O = (Li+ • C3H6O)

Quantity Value Units Method Reference Comment
Δr44.5kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Lithium ion (1+) + Acetic acid, methyl ester = (Lithium ion (1+) • Acetic acid, methyl ester)

By formula: Li+ + C3H6O2 = (Li+ • C3H6O2)

Quantity Value Units Method Reference Comment
Δr44.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Lithium ion (1+) + Propene = (Lithium ion (1+) • Propene)

By formula: Li+ + C3H6 = (Li+ • C3H6)

Quantity Value Units Method Reference Comment
Δr23.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Lithium ion (1+) + Propane, 2-bromo- = (Lithium ion (1+) • Propane, 2-bromo-)

By formula: Li+ + C3H7Br = (Li+ • C3H7Br)

Quantity Value Units Method Reference Comment
Δr30.5kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Lithium ion (1+) + Propane, 2-chloro- = (Lithium ion (1+) • Propane, 2-chloro-)

By formula: Li+ + C3H7Cl = (Li+ • C3H7Cl)

Quantity Value Units Method Reference Comment
Δr30.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Lithium ion (1+) + Propane, 2-fluoro- = (Lithium ion (1+) • Propane, 2-fluoro-)

By formula: Li+ + C3H7F = (Li+ • C3H7F)

Quantity Value Units Method Reference Comment
Δr35.5kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Lithium ion (1+) + Propane, 2-iodo- = (Lithium ion (1+) • Propane, 2-iodo-)

By formula: Li+ + C3H7I = (Li+ • C3H7I)

Quantity Value Units Method Reference Comment
Δr29.5kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Lithium ion (1+) + Formamide, N,N-dimethyl- = (Lithium ion (1+) • Formamide, N,N-dimethyl-)

By formula: Li+ + C3H7NO = (Li+ • C3H7NO)

Quantity Value Units Method Reference Comment
Δr50.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Lithium ion (1+) + Acetamide, N-methyl- = (Lithium ion (1+) • Acetamide, N-methyl-)

By formula: Li+ + C3H7NO = (Li+ • C3H7NO)

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
41.4373.CIDT,ICRHerreros, Gal, et al., 1999RCD

Lithium ion (1+) + Isopropyl Alcohol = (Lithium ion (1+) • Isopropyl Alcohol)

By formula: Li+ + C3H8O = (Li+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr41.3 ± 1.9kcal/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + 1-Propanol = (Lithium ion (1+) • 1-Propanol)

By formula: Li+ + C3H8O = (Li+ • C3H8O)

Quantity Value Units Method Reference Comment
Δr40.9 ± 1.9kcal/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + Methylamine, N,N-dimethyl- = (Lithium ion (1+) • Methylamine, N,N-dimethyl-)

By formula: Li+ + C3H9N = (Li+ • C3H9N)

Quantity Value Units Method Reference Comment
Δr42.1kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Δr40.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970; M
Quantity Value Units Method Reference Comment
Δr28.cal/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr33.kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M

Lithium ion (1+) + Pyrazine = (Lithium ion (1+) • Pyrazine)

By formula: Li+ + C4H4N2 = (Li+ • C4H4N2)

Quantity Value Units Method Reference Comment
Δr35.6 ± 3.3kcal/molCIDTAmunugama and Rodgers, 2000RCD

Lithium ion (1+) + Pyrrole = (Lithium ion (1+) • Pyrrole)

By formula: Li+ + C4H5N = (Li+ • C4H5N)

Quantity Value Units Method Reference Comment
Δr42.3 ± 4.0kcal/molCIDTHuang and Rodgers, 2002RCD

Lithium ion (1+) + 1H-Imidazole, 1-methyl- = (Lithium ion (1+) • 1H-Imidazole, 1-methyl-)

By formula: Li+ + C4H6N2 = (Li+ • C4H6N2)

Quantity Value Units Method Reference Comment
Δr57.9 ± 5.0kcal/molCIDTHuang and Rodgers, 2002RCD

Lithium ion (1+) + 1H-Pyrazole, 1-methyl- = (Lithium ion (1+) • 1H-Pyrazole, 1-methyl-)

By formula: Li+ + C4H6N2 = (Li+ • C4H6N2)

Quantity Value Units Method Reference Comment
Δr49.5 ± 4.5kcal/molCIDTHuang and Rodgers, 2002RCD

Lithium ion (1+) + 1-Propene, 2-methyl- = (Lithium ion (1+) • 1-Propene, 2-methyl-)

By formula: Li+ + C4H8 = (Li+ • C4H8)

Quantity Value Units Method Reference Comment
Δr28.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Lithium ion (1+) + 1-Butanol = (Lithium ion (1+) • 1-Butanol)

By formula: Li+ + C4H10O = (Li+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr42.5 ± 1.9kcal/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + 2-Propanol, 2-methyl- = (Lithium ion (1+) • 2-Propanol, 2-methyl-)

By formula: Li+ + C4H10O = (Li+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr42.5 ± 2.4kcal/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + 1-Propanol, 2-methyl- = (Lithium ion (1+) • 1-Propanol, 2-methyl-)

By formula: Li+ + C4H10O = (Li+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr40.4 ± 1.9kcal/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + 2-Butanol = (Lithium ion (1+) • 2-Butanol)

By formula: Li+ + C4H10O = (Li+ • C4H10O)

Quantity Value Units Method Reference Comment
Δr41.6 ± 2.2kcal/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + Ethane, 1,2-dimethoxy- = (Lithium ion (1+) • Ethane, 1,2-dimethoxy-)

By formula: Li+ + C4H10O2 = (Li+ • C4H10O2)

Quantity Value Units Method Reference Comment
Δr37.8 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD

(Lithium ion (1+) • Ethane, 1,2-dimethoxy-) + Ethane, 1,2-dimethoxy- = (Lithium ion (1+) • 2Ethane, 1,2-dimethoxy-)

By formula: (Li+ • C4H10O2) + C4H10O2 = (Li+ • 2C4H10O2)

Quantity Value Units Method Reference Comment
Δr33.2 ± 2.9kcal/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + Pyridine = (Lithium ion (1+) • Pyridine)

By formula: Li+ + C5H5N = (Li+ • C5H5N)

Quantity Value Units Method Reference Comment
Δr43.2 ± 3.5kcal/molCIDTAmunugama and Rodgers, 2000RCD
Δr44.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Lithium ion (1+) + 3-Aminopyridine = (Lithium ion (1+) • 3-Aminopyridine)

By formula: Li+ + C5H6N2 = (Li+ • C5H6N2)

Quantity Value Units Method Reference Comment
Δr48.2 ± 2.5kcal/molCIDTRodgers, 2001RCD

Lithium ion (1+) + 4-Aminopyridine = (Lithium ion (1+) • 4-Aminopyridine)

By formula: Li+ + C5H6N2 = (Li+ • C5H6N2)

Quantity Value Units Method Reference Comment
Δr51.8 ± 5.0kcal/molCIDTRodgers, 2001RCD

Lithium ion (1+) + 2-Aminopyridine = (Lithium ion (1+) • 2-Aminopyridine)

By formula: Li+ + C5H6N2 = (Li+ • C5H6N2)

Quantity Value Units Method Reference Comment
Δr56.8 ± 5.0kcal/molCIDTRodgers, 2001RCD

Lithium ion (1+) + 1H-Pyrrole, 1-methyl- = (Lithium ion (1+) • 1H-Pyrrole, 1-methyl-)

By formula: Li+ + C5H7N = (Li+ • C5H7N)

Quantity Value Units Method Reference Comment
Δr44.5 ± 4.0kcal/molCIDTHuang and Rodgers, 2002RCD

Lithium ion (1+) + Benzene, fluoro- = (Lithium ion (1+) • Benzene, fluoro-)

By formula: Li+ + C6H5F = (Li+ • C6H5F)

Quantity Value Units Method Reference Comment
Δr35.1 ± 5.0kcal/molCIDTAmunugama and Rodgers, 2002RCD

(Lithium ion (1+) • Benzene, fluoro-) + Benzene, fluoro- = (Lithium ion (1+) • 2Benzene, fluoro-)

By formula: (Li+ • C6H5F) + C6H5F = (Li+ • 2C6H5F)

Quantity Value Units Method Reference Comment
Δr22.7 ± 0.7kcal/molCIDTAmunugama and Rodgers, 2002RCD

Lithium ion (1+) + Phenol = (Lithium ion (1+) • Phenol)

By formula: Li+ + C6H6O = (Li+ • C6H6O)

Quantity Value Units Method Reference Comment
Δr42.6 ± 4.0kcal/molCIDTAmunugama and Rodgers, 2002, 2RCD

(Lithium ion (1+) • Phenol) + Phenol = (Lithium ion (1+) • 2Phenol)

By formula: (Li+ • C6H6O) + C6H6O = (Li+ • 2C6H6O)

Quantity Value Units Method Reference Comment
Δr27.4 ± 0.8kcal/molCIDTAmunugama and Rodgers, 2002, 2RCD

Lithium ion (1+) + Benzene = (Lithium ion (1+) • Benzene)

By formula: Li+ + C6H6 = (Li+ • C6H6)

Quantity Value Units Method Reference Comment
Δr38.5 ± 3.2kcal/molCIDTAmicangelo and Armentrout, 2000RCD
Δr37.9kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Δr36.5kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr27.5cal/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr29.7kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 extrapolated; M

(Lithium ion (1+) • Benzene) + Benzene = (Lithium ion (1+) • 2Benzene)

By formula: (Li+ • C6H6) + C6H6 = (Li+ • 2C6H6)

Quantity Value Units Method Reference Comment
Δr24.9 ± 1.7kcal/molCIDTAmicangelo and Armentrout, 2000RCD

Lithium ion (1+) + Pyridine, 4-methyl- = (Lithium ion (1+) • Pyridine, 4-methyl-)

By formula: Li+ + C6H7N = (Li+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr46.9 ± 3.3kcal/molCIDTRodgers, 2001, 2RCD

Lithium ion (1+) + Pyridine, 3-methyl- = (Lithium ion (1+) • Pyridine, 3-methyl-)

By formula: Li+ + C6H7N = (Li+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr47.0 ± 3.5kcal/molCIDTRodgers, 2001, 2RCD

Lithium ion (1+) + Pyridine, 2-methyl- = (Lithium ion (1+) • Pyridine, 2-methyl-)

By formula: Li+ + C6H7N = (Li+ • C6H7N)

Quantity Value Units Method Reference Comment
Δr46.4 ± 1.6kcal/molCIDTRodgers, 2001, 2RCD

Lithium ion (1+) + Cyclohexane = (Lithium ion (1+) • Cyclohexane)

By formula: Li+ + C6H12 = (Li+ • C6H12)

Quantity Value Units Method Reference Comment
Δr24.kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M

Lithium ion (1+) + Methyl 4-nitrophenyl sulfone = (Lithium ion (1+) • Methyl 4-nitrophenyl sulfone)

By formula: Li+ + C7H8NO4S = (Li+ • C7H8NO4S)

Quantity Value Units Method Reference Comment
Δr47.4kcal/molCIDCBuncel, Decouzon, et al., 1997RCD

Lithium ion (1+) + Benzene, (methylsulfinyl)- = (Lithium ion (1+) • Benzene, (methylsulfinyl)-)

By formula: Li+ + C7H8OS = (Li+ • C7H8OS)

Quantity Value Units Method Reference Comment
Δr54.9kcal/molCIDCBuncel, Decouzon, et al., 1997RCD

Lithium ion (1+) + Anisole = (Lithium ion (1+) • Anisole)

By formula: Li+ + C7H8O = (Li+ • C7H8O)

Quantity Value Units Method Reference Comment
Δr44.1 ± 4.5kcal/molCIDTAmunugama and Rodgers, 2003RCD

(Lithium ion (1+) • Anisole) + Anisole = (Lithium ion (1+) • 2Anisole)

By formula: (Li+ • C7H8O) + C7H8O = (Li+ • 2C7H8O)

Quantity Value Units Method Reference Comment
Δr29.0 ± 0.9kcal/molCIDTAmunugama and Rodgers, 2003RCD

Lithium ion (1+) + Sulfone, methyl phenyl = (Lithium ion (1+) • Sulfone, methyl phenyl)

By formula: Li+ + C7H8O2S = (Li+ • C7H8O2S)

Quantity Value Units Method Reference Comment
Δr50.8kcal/molCIDCBuncel, Decouzon, et al., 1997RCD

Lithium ion (1+) + C7H8O3S = (Lithium ion (1+) • C7H8O3S)

By formula: Li+ + C7H8O3S = (Li+ • C7H8O3S)

Quantity Value Units Method Reference Comment
Δr49.2kcal/molCIDCBuncel, Decouzon, et al., 1997RCD

Lithium ion (1+) + Toluene = (Lithium ion (1+) • Toluene)

By formula: Li+ + C7H8 = (Li+ • C7H8)

Quantity Value Units Method Reference Comment
Δr43.7 ± 4.0kcal/molCIDTAmunugama and Rodgers, 2002, 3RCD

(Lithium ion (1+) • Toluene) + Toluene = (Lithium ion (1+) • 2Toluene)

By formula: (Li+ • C7H8) + C7H8 = (Li+ • 2C7H8)

Quantity Value Units Method Reference Comment
Δr27.8 ± 0.7kcal/molCIDTAmunugama and Rodgers, 2002, 3RCD

Lithium ion (1+) + Benzene, 1-methyl-4-(methylsulfonyl)- = (Lithium ion (1+) • Benzene, 1-methyl-4-(methylsulfonyl)-)

By formula: Li+ + C8H10O2S = (Li+ • C8H10O2S)

Quantity Value Units Method Reference Comment
Δr51.7kcal/molCIDCBuncel, Decouzon, et al., 1997RCD

Lithium ion (1+) + 12-Crown-4 = (Lithium ion (1+) • 12-Crown-4)

By formula: Li+ + C8H16O4 = (Li+ • C8H16O4)

Quantity Value Units Method Reference Comment
Δr60.2 ± 3.1kcal/molCIDTRodgers and Armentrout, 2000RCD

Lithium ion (1+) + Diphenyl sulfoxide = (Lithium ion (1+) • Diphenyl sulfoxide)

By formula: Li+ + C12H10OS = (Li+ • C12H10OS)

Quantity Value Units Method Reference Comment
Δr55.9kcal/molCIDCBuncel, Decouzon, et al., 1997RCD

Lithium ion (1+) + Diphenyl sulfone = (Lithium ion (1+) • Diphenyl sulfone)

By formula: Li+ + C12H10O2S = (Li+ • C12H10O2S)

Quantity Value Units Method Reference Comment
Δr52.1kcal/molCIDCBuncel, Decouzon, et al., 1997RCD

Lithium ion (1+) + Water = (Lithium ion (1+) • Water)

By formula: Li+ + H2O = (Li+ • H2O)

Quantity Value Units Method Reference Comment
Δr32.3 ± 1.9kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr34.kcal/molHPMSDzidic and Kebarle, 1970gas phase; interpolated; M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KHPMSDzidic and Kebarle, 1970gas phase; interpolated; M

(Lithium ion (1+) • Water) + Water = (Lithium ion (1+) • 2Water)

By formula: (Li+ • H2O) + H2O = (Li+ • 2H2O)

Quantity Value Units Method Reference Comment
Δr27.0 ± 2.4kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr25.8kcal/molHPMSDzidic and Kebarle, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr21.1cal/mol*KHPMSDzidic and Kebarle, 1970gas phase; M

(Lithium ion (1+) • 2Water) + Water = (Lithium ion (1+) • 3Water)

By formula: (Li+ • 2H2O) + H2O = (Li+ • 3H2O)

Quantity Value Units Method Reference Comment
Δr22.5 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr17. ± 3.kcal/molHPMSBlades, Jayaweera, et al., 1990gas phase; electrospray; M
Δr20.7kcal/molHPMSDzidic and Kebarle, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KHPMSBlades, Jayaweera, et al., 1990gas phase; electrospray; M
Δr24.9cal/mol*KHPMSDzidic and Kebarle, 1970gas phase; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
10.0300.HPMSBlades, Jayaweera, et al., 1990gas phase; electrospray; M

(Lithium ion (1+) • 3Water) + Water = (Lithium ion (1+) • 4Water)

By formula: (Li+ • 3H2O) + H2O = (Li+ • 4H2O)

Quantity Value Units Method Reference Comment
Δr16.7 ± 1.2kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr16.4kcal/molHPMSDzidic and Kebarle, 1970gas phase; M
Δr15. ± 3.kcal/molHPMSBlades, Jayaweera, et al., 1990gas phase; electrospray, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr29.9cal/mol*KHPMSDzidic and Kebarle, 1970gas phase; M
Δr23.cal/mol*KN/ABlades, Jayaweera, et al., 1990gas phase; electrospray, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
7.8300.HPMSBlades, Jayaweera, et al., 1990gas phase; electrospray, Entropy change calculated or estimated; M

(Lithium ion (1+) • 4Water) + Water = (Lithium ion (1+) • 5Water)

By formula: (Li+ • 4H2O) + H2O = (Li+ • 5H2O)

Quantity Value Units Method Reference Comment
Δr13.6 ± 1.0kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr13.9kcal/molHPMSDzidic and Kebarle, 1970gas phase; M
Δr12. ± 3.kcal/molHPMSBlades, Jayaweera, et al., 1990gas phase; electospray, Entropy change calculated or estimated; M
Quantity Value Units Method Reference Comment
Δr31.4cal/mol*KHPMSDzidic and Kebarle, 1970gas phase; M
Δr23.cal/mol*KN/ABlades, Jayaweera, et al., 1990gas phase; electospray, Entropy change calculated or estimated; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
5.5300.HPMSBlades, Jayaweera, et al., 1990gas phase; electospray, Entropy change calculated or estimated; M

(Lithium ion (1+) • 5Water) + Water = (Lithium ion (1+) • 6Water)

By formula: (Li+ • 5H2O) + H2O = (Li+ • 6H2O)

Quantity Value Units Method Reference Comment
Δr14.3 ± 1.2kcal/molCIDTRodgers and Armentrout, 2000RCD
Δr12.1kcal/molHPMSDzidic and Kebarle, 1970gas phase; M
Quantity Value Units Method Reference Comment
Δr32.0cal/mol*KHPMSDzidic and Kebarle, 1970gas phase; M

Lithium ion (1+) + Hydrogen = (Lithium ion (1+) • Hydrogen)

By formula: Li+ + H2 = (Li+ • H2)

Quantity Value Units Method Reference Comment
Δr6.5 ± 4.6kcal/molEIWu, 1979gas phase; M

Lithium ion (1+) + Ammonia = (Lithium ion (1+) • Ammonia)

By formula: Li+ + H3N = (Li+ • H3N)

Quantity Value Units Method Reference Comment
Δr39.1kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Δr38.5kcal/molICRStaley and Beauchamp, 1975gas phase; switching reaction(Li+)H2O, from graph; Dzidic and Kebarle, 1970 extrapolated; M
Quantity Value Units Method Reference Comment
Δr23.cal/mol*KN/AWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M
Quantity Value Units Method Reference Comment
Δr32.1kcal/molICRWoodin and Beauchamp, 1978gas phase; switching reaction(Li+)H2O, Entropy change calculated or estimated; Dzidic and Kebarle, 1970 interpolated; M

(Lithium ion (1+) • Ammonia) + Ammonia = (Lithium ion (1+) • 2Ammonia)

By formula: (Li+ • H3N) + H3N = (Li+ • 2H3N)

Quantity Value Units Method Reference Comment
Δr33.1kcal/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr29.7cal/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Lithium ion (1+) • 2Ammonia) + Ammonia = (Lithium ion (1+) • 3Ammonia)

By formula: (Li+ • 2H3N) + H3N = (Li+ • 3H3N)

Quantity Value Units Method Reference Comment
Δr21.0kcal/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr25.3cal/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Lithium ion (1+) • 3Ammonia) + Ammonia = (Lithium ion (1+) • 4Ammonia)

By formula: (Li+ • 3H3N) + H3N = (Li+ • 4H3N)

Quantity Value Units Method Reference Comment
Δr16.5kcal/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr32.6cal/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Lithium ion (1+) • 4Ammonia) + Ammonia = (Lithium ion (1+) • 5Ammonia)

By formula: (Li+ • 4H3N) + H3N = (Li+ • 5H3N)

Quantity Value Units Method Reference Comment
Δr11.1kcal/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr28.0cal/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

(Lithium ion (1+) • 5Ammonia) + Ammonia = (Lithium ion (1+) • 6Ammonia)

By formula: (Li+ • 5H3N) + H3N = (Li+ • 6H3N)

Quantity Value Units Method Reference Comment
Δr9.3kcal/molHPMSCastleman, Holland, et al., 1978gas phase; M
Quantity Value Units Method Reference Comment
Δr25.3cal/mol*KHPMSCastleman, Holland, et al., 1978gas phase; M

Lithium ion (1+) + helium = (Lithium ion (1+) • helium)

By formula: Li+ + He = (Li+ • He)

Quantity Value Units Method Reference Comment
Δr1.71kcal/molIMobGatland, 1984gas phase; M
Δr1.64kcal/molSCATTERINGGislason, 1984gas phase; M
Δr1.69kcal/molIMobViehland, 1984gas phase; M
Δr1.09kcal/molIMobMason and Sharp, 1958gas phase; M
Δr3.16kcal/molIMobTakebe, 1983gas phase; M

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
-3.7309.DTColonna-Romano and Keller, 1976gas phase; low E/N; M

Lithium ion (1+) + Krypton = (Lithium ion (1+) • Krypton)

By formula: Li+ + Kr = (Li+ • Kr)

Quantity Value Units Method Reference Comment
Δr10.6kcal/molSCATTERINGGislason, 1984gas phase; M
Δr9.2kcal/molIMobViehland, 1984gas phase; M
Δr16.4kcal/molIMobTakebe, 1983gas phase; M

Lithium ion (1+) + Nitrogen = (Lithium ion (1+) • Nitrogen)

By formula: Li+ + N2 = (Li+ • N2)

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
5.6318.DTGatland, Colonna-Romano, et al., 1975gas phase; low E/N; M

(Lithium ion (1+) • Nitrogen) + Nitrogen = (Lithium ion (1+) • 2Nitrogen)

By formula: (Li+ • N2) + N2 = (Li+ • 2N2)

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
4.4318.DTGatland, Colonna-Romano, et al., 1975gas phase; low E/N; M

Lithium ion (1+) + neon = (Lithium ion (1+) • neon)

By formula: Li+ + Ne = (Li+ • Ne)

Quantity Value Units Method Reference Comment
Δr2.63kcal/molSCATTERINGGislason, 1984gas phase; M
Δr2.84kcal/molIMobViehland, 1984gas phase; M
Δr3.34kcal/molIMobTakebe, 1983gas phase; M

Lithium ion (1+) + Oxygen = (Lithium ion (1+) • Oxygen)

By formula: Li+ + O2 = (Li+ • O2)

Free energy of reaction

ΔrG° (kcal/mol) T (K) Method Reference Comment
4.2319.DTColonna-Romano and Keller, 1976gas phase; low E/N; M

Lithium ion (1+) + Xenon = (Lithium ion (1+) • Xenon)

By formula: Li+ + Xe = (Li+ • Xe)

Quantity Value Units Method Reference Comment
Δr12.3kcal/molSCATTERINGGislason, 1984gas phase; M
Δr12.6kcal/molIMobViehland, 1984gas phase; M
Δr20.8kcal/molIMobTakebe, 1983gas phase; M

References

Go To: Top, Gas phase thermochemistry data, Ion clustering data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Chase, 1998
Chase, M.W., Jr., NIST-JANAF Themochemical Tables, Fourth Edition, J. Phys. Chem. Ref. Data, Monograph 9, 1998, 1-1951. [all data]

McKnight and Sawina, 1973
McKnight, L.G.; Sawina, J.M., Equilibrium Constants and Binding Energies of Alkali Metal Ions with Inert Gases, Bull. Am. Phys. Soc., 1973, 18, 804. [all data]

Cassidy and Elford, 1985
Cassidy, R.A.; Elford, M.T., The Mobility of Li+ Ions in Helium and Argon, Aust. J. Phys., 1985, 38, 4, 587, https://doi.org/10.1071/PH850587 . [all data]

Keller, Beyer, et al., 1973
Keller, C.E.; Beyer, R.A.; Colonna-Romano, L.M., Clustering of Ar to Li+ and a Comparison of Drift - Tube Models, Phys. Rev. A, 1973, 8, 3, 1446, https://doi.org/10.1103/PhysRevA.8.1446 . [all data]

Woodin and Beauchamp, 1978
Woodin, R.L.; Beauchamp, J.L., Bonding of Li+ to Lewis Bases in the Gas Phase. Reversals in Methyl Substituent Effects for Different Reference Acids, J. Am. Chem. Soc., 1978, 100, 2, 501, https://doi.org/10.1021/ja00470a024 . [all data]

Dzidic and Kebarle, 1970
Dzidic, I.; Kebarle, P., Hydration of the Alkali Ions in the Gas Phase. Enthalpies and Entropies of Reactions M+(H2O)n-1 + H2O = M+(H2O)n, J. Phys. Chem., 1970, 74, 7, 1466, https://doi.org/10.1021/j100702a013 . [all data]

Staley and Beauchamp, 1975
Staley, R.H.; Beauchamp, J.L., Intrinsic Acid - Base Properties of Molecules. Binding Energies of Li+ to pi - and n - Donor Bases, J. Am. Chem. Soc., 1975, 97, 20, 5920, https://doi.org/10.1021/ja00853a050 . [all data]

Rodgers and Armentrout, 2000
Rodgers, M.T.; Armentrout, P.B., Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation, Mass Spectrom. Rev., 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X . [all data]

Herreros, Gal, et al., 1999
Herreros, M.; Gal, J.-F.; Maria, P.-C.; Decouzon, M., Gas-Phase Basicity of Simple Amides Toward Proton and Lithium Cation: An Experimental and Theoretical Study, Eur. J. Mass Spectrom., 1999, 5, 1, 259, https://doi.org/10.1255/ejms.282 . [all data]

Walter, Sievers, et al., 1998
Walter, D.; Sievers, M.R.; Armentrout, P.B., Alkali Ion Carbonyls: Sequential Bond Energies of Li+(CO)x (x=1-3), Na+(CO)x (x=1, 2), and K+(CO), Int. J. Mass Spectrom., 1998, 175, 1-2, 93, https://doi.org/10.1016/S0168-1176(98)00109-8 . [all data]

Keesee and Castleman, 1986
Keesee, R.G.; Castleman, A.W., Jr., Thermochemical data on Ggs-phase ion-molecule association and clustering reactions, J. Phys. Chem. Ref. Data, 1986, 15, 1011. [all data]

Berman and Beauchamp, 1986
Berman, D.W.; Beauchamp, J.L., Quoted in Keesee and Castleman, 1986, 1986. [all data]

Buncel, Decouzon, et al., 1997
Buncel, E.; Decouzon, M.; Formento, A.; Gal, J.-F.; Herreros, M.; Li, L.; Maria, P.-C., Lithium-Cation and Proton Affinities of Sulfoxides and Sulfones: A Fourier Transform Ion Cyclotron Resonance Study, J. Am. Soc. Mass Spectrom., 1997, 8, 3, 262, https://doi.org/10.1016/S1044-0305(96)00255-3 . [all data]

More, Gledening, et al., 1996
More, M.B.; Gledening, E.D.; Ray, D.; Feller, D.; Armentrout, P.B., Cation-Ether Complexes in the Gas Phase: Bond Dissociation Energies and Equilibrium Structures of Li+[O(CH3)2]x, x=1-4, J. Phys. Chem., 1996, 100, 5, 1605, https://doi.org/10.1021/jp9523175 . [all data]

Amunugama and Rodgers, 2000
Amunugama, R.; Rodgers, M.T., Absolute Alkali Metal Ion Binding Affinities of Several Azines Determined by Threshold Collision-Induced Dissociation and Ab Initio Theory, Int. J. Mass Spectrom., 2000, 195/196, 439, https://doi.org/10.1016/S1387-3806(99)00145-1 . [all data]

Huang and Rodgers, 2002
Huang, H.; Rodgers, M.T., Sigma versus Pi interactions in alkali metal ion binding to azoles: Threshold collision-induced dissociation and ab initio theory studies, J. Phys. Chem. A, 2002, 106, 16, 4277, https://doi.org/10.1021/jp013630b . [all data]

Rodgers, 2001
Rodgers, M.T., Substituent Effects in the Binding of Alkali Metal Ions to Pyridines, Studied by Threshold Collision-Induced Dissociation and ab Initio Theory: The Aminopyridines, J. Phys. Chem. A, 2001, 105, 35, 8145, https://doi.org/10.1021/jp011555z . [all data]

Amunugama and Rodgers, 2002
Amunugama, R.; Rodgers, M.T., Influence of substituents on cation-pi interactions. 2. Absolute binding energies of alkali metal cation-fluorobenzene complexes determined by threshold collision-induced dissociation and theoretical studies, J. Phys. Chem. A, 2002, 106, 39, 9092, https://doi.org/10.1021/jp020459a . [all data]

Amunugama and Rodgers, 2002, 2
Amunugama, R.; Rodgers, M.T., The influence of substituents on cation-pi interactions. 4. Absolute binding energies of alkali metal cation - Phenol complexes determined by threshold collision-induced dissociation and theoretical studies, J. Phys. Chem. A, 2002, 106, 42, 9718, https://doi.org/10.1021/jp0211584 . [all data]

Amicangelo and Armentrout, 2000
Amicangelo, J.C.; Armentrout, P.B., Absolute Binding Energies of Alkali-Metal Cation Complexes with Benzene Determined by Threshold Collision-Induced Dissociation Experiments and Ab Initio Theory, J. Phys. Chem. A, 2000, 104, 48, 11420, https://doi.org/10.1021/jp002652f . [all data]

Rodgers, 2001, 2
Rodgers, M.T., Substituent Effects in the Binding of Alkali Metal Ions to Pyridines, Studied by Threshold Collision-Induced Dissociation and ab Initio Theory: The Methylpyridines, J. Phys. Chem. A, 2001, 105, 11, 2374, https://doi.org/10.1021/jp004055z . [all data]

Amunugama and Rodgers, 2003
Amunugama, R.; Rodgers, M.T., Influence of substituents on cation-pi interactions - 5. Absolute binding energies of alkali metal cation-anisole complexes determined by threshold collision-induced dissociation and theoretical studies, Int. J. Mass Spectrom., 2003, 222, 1-3, 431, https://doi.org/10.1016/S1387-3806(02)00945-4 . [all data]

Amunugama and Rodgers, 2002, 3
Amunugama, R.; Rodgers, M.T., Influence of substituents on cation-pi interactions. 1. Absolute binding energies of alkali metal cation-toluene complexes determined by threshold collision-induced dissociation and theoretical studies, J. Phys. Chem. A, 2002, 106, 22, 5529, https://doi.org/10.1021/jp014307b . [all data]

Blades, Jayaweera, et al., 1990
Blades, A.T.; Jayaweera, P.; Ikonomou, M.G.; Kebarle, P., Studies of Alkaline - Earth and Transition - Metal M++ Gas - Phase Ion Chemistry, J. Chem. Phys., 1990, 92, 10, 5900, https://doi.org/10.1063/1.458360 . [all data]

Wu, 1979
Wu, C.H., Binding Energies of LiH2 and LiH2+ and the Ionization Potential of LiH2, J. Chem. Phys., 1979, 71, 2, 783, https://doi.org/10.1063/1.438367 . [all data]

Castleman, Holland, et al., 1978
Castleman, A.W.; Holland, P.M.; Lindsay, D.M.; Peterson, K.I., The Properties of Clusters in the Gas Phase. 2. Ammonia about Metal Ions, J. Am. Chem. Soc., 1978, 100, 19, 6039, https://doi.org/10.1021/ja00487a011 . [all data]

Gatland, 1984
Gatland, I.R., Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Gislason, 1984
Gislason, E.A., Quoted in I. R. Gatland in Swarms of Ions and Electrons in Gases, W. Lindinger, T. D. Mark and F. Howorka, eds. (Springer, New York, 1984, 1984, 44. [all data]

Viehland, 1984
Viehland, L.A., Interaction Potentials for Li+ - Rare - Gas Systems, Chem. Phys., 1984, 78, 2, 279, https://doi.org/10.1016/0301-0104(83)85114-3 . [all data]

Mason and Sharp, 1958
Mason, E.A.; Sharp, H.W., Mobility of gaseous lons in weak electric fields, Ann. Phys., 1958, 4, 3, 233, https://doi.org/10.1016/0003-4916(58)90049-6 . [all data]

Takebe, 1983
Takebe, M., The Generalized Mobility Curve for Alkali Ions in Rare Gases: Clustering Reactions and Mobility Curves, J. Chem. Phys., 1983, 78, 12, 7223, https://doi.org/10.1063/1.444763 . [all data]

Colonna-Romano and Keller, 1976
Colonna-Romano, L.M.; Keller, G.E., The Clustering of O2 and He to Li+, J. Chem. Phys., 1976, 64, 6, 2684, https://doi.org/10.1063/1.432522 . [all data]

Gatland, Colonna-Romano, et al., 1975
Gatland, I.R.; Colonna-Romano, L.M.; Keller, G.E., Single and Double Clustering of Nitrogen to Li+, Phys. Rev. A, 1975, 12, 5, 1885, https://doi.org/10.1103/PhysRevA.12.1885 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Ion clustering data, References