3-Ethyl-3-methylheptane

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Henry's Law data

Go To: Top, IR Spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Rolf Sander

Henry's Law constant (water solution)

kH(T) = H exp(d(ln(kH))/d(1/T) ((1/T) - 1/(298.15 K)))
H = Henry's law constant for solubility in water at 298.15 K (mol/(kg*bar))
d(ln(kH))/d(1/T) = Temperature dependence constant (K)

H (mol/(kg*bar)) d(ln(kH))/d(1/T) (K) Method Reference Comment
0.00014 QN/A missing citation give several references for the Henry's law constants but don't assign them to specific species.

IR Spectrum

Go To: Top, Henry's Law data, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Gas Phase Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

IR spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Notice: Concentration information is not available for this spectrum and, therefore, molar absorptivity values cannot be derived.

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Owner NIST Standard Reference Data Program
Collection (C) 2018 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin NIST Mass Spectrometry Data Center
State gas
Instrument HP-GC/MS/IRD

This IR spectrum is from the NIST/EPA Gas-Phase Infrared Database .


Gas Chromatography

Go To: Top, Henry's Law data, IR Spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Kovats' RI, non-polar column, isothermal

View large format table.

Column type Active phase Temperature (C) I Reference Comment
CapillaryDB-160.947.8Lubeck and Sutton, 1983Column length: 60. m; Column diameter: 0.264 mm
CapillaryDB-160.947.5Lubeck and Sutton, 198360. m/0.259 mm/1. μm
CapillarySqualane60.953.Chretien and Dubois, 1976 
CapillaryVacuum Grease Oil (VM-4)95.952.6Sultanov and Arustamova, 1975N2; Column length: 150. m; Column diameter: 0.25 mm
CapillarySqualane60.953.Matukuma, 1969N2; Column length: 91.4 m; Column diameter: 0.25 mm

Kovats' RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-101940.Hayes and Pitzer, 1982110. m/0.25 mm/0.20 μm, He, 1. K/min; Tstart: 35. C; Tend: 200. C

Van Den Dool and Kratz RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-101940.Hayes and Pitzer, 1981108. m/0.25 mm/0.2 μm, 1. K/min; Tstart: 35. C; Tend: 200. C

Normal alkane RI, non-polar column, custom temperature program

View large format table.

Column type Active phase I Reference Comment
CapillaryOV-101953.Du and Liang, 2003Program: not specified

References

Go To: Top, Henry's Law data, IR Spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Lubeck and Sutton, 1983
Lubeck, A.J.; Sutton, DL., Kovats retention indices of selected hydrocarbons through C10 on bonded phase fused silica capillaries, J. Hi. Res. Chromatogr. Chromatogr. Comm., 1983, 6, 6, 328-332, https://doi.org/10.1002/jhrc.1240060612 . [all data]

Chretien and Dubois, 1976
Chretien, J.R.; Dubois, J.-E., New Perspectives in the Prediction of Kovats Indices, J. Chromatogr., 1976, 126, 171-189, https://doi.org/10.1016/S0021-9673(01)84071-1 . [all data]

Sultanov and Arustamova, 1975
Sultanov, N.T.; Arustamova, L.G., Determination of the boiling points of C10 isoalkanes in an n-decane isomerizate from gas chromatographic retention indices, J. Chromatogr., 1975, 115, 2, 553-558, https://doi.org/10.1016/S0021-9673(01)98959-9 . [all data]

Matukuma, 1969
Matukuma, A., Retention indices of alkanes through C10 and alkenes through C8 and relation between boiling points and retention data, Gas Chromatogr., Int. Symp. Anal. Instrum. Div Instrum Soc. Amer., 1969, 7, 55-75. [all data]

Hayes and Pitzer, 1982
Hayes, P.C., Jr.; Pitzer, E.W., Characterizing petroleum- and shale-derived jet fuel distillates via temperature-programmed Kováts indices, J. Chromatogr., 1982, 253, 179-198, https://doi.org/10.1016/S0021-9673(01)88376-X . [all data]

Hayes and Pitzer, 1981
Hayes, P.C., Jr.; Pitzer, E.W., Kovats indices as a tool in characterizing hydrocarbon fuels in temperature programmed glass capillary gas chromatography. Part 1. Qualitative identification, Inhouse rpt. for Air Force Wright Aeronautical Labs., Air Force Wright Aeronautical Labs., Wright-Patterson AFB, Ohio, 1981, 75. [all data]

Du and Liang, 2003
Du, Y.; Liang, Y., Data mining for seeking accurate quantitative relationship between molecular structure and GC retention indices of alkanes by projection pursuit, Comput. Biol. Chem., 2003, 27, 3, 339-353, https://doi.org/10.1016/S1476-9271(02)00081-6 . [all data]


Notes

Go To: Top, Henry's Law data, IR Spectrum, Gas Chromatography, References