Cobalt ion (1+)
Formula : Co+
Molecular weight : 58.932646
IUPAC Standard InChI:
InChI=1S/Co/q+1
Copy
IUPAC Standard InChIKey:
BFVNPAKTAJENJQ-UHFFFAOYSA-N
Copy
CAS Registry Number: 16610-75-6
Chemical structure:
This structure is also available as a 2d Mol file
Other names:
Cobalt cation
Permanent link
for this species. Use this link for bookmarking this species
for future reference.
Information on this page:
Other data available:
Options:
Gas phase thermochemistry data
Go To: Top , Reaction thermochemistry data , Ion clustering data , References , Notes
Data compilation copyright
by the U.S. Secretary of Commerce on behalf of the U.S.A.
All rights reserved.
Quantity
Value
Units
Method
Reference
Comment
S°gas,1 bar 178.34 J/mol*K Review Chase, 1998 Data last reviewed in June, 1984
Reaction thermochemistry data
Go To: Top , Gas phase thermochemistry data , Ion clustering data , References , Notes
Data compilation copyright
by the U.S. Secretary of Commerce on behalf of the U.S.A.
All rights reserved.
Data compiled as indicated in comments:
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
RCD - Robert C. Dunbar
Note: Please consider using the
reaction search for this species. This page allows searching
of all reactions involving this species. A general reaction search
form is
also available . Future versions of this site may rely on
reaction search pages in place of the enumerated reaction
displays seen below.
Reactions 1 to 50
( • 2 ) + = ( • 3 )
By formula: ( Co+ • 2 CH4 ) + CH4 = ( Co+ • 3 CH4 )
Enthalpy of reaction
Free energy of reaction
+ = ( • )
By formula: Co+ + H2 = ( Co+ • H2 )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 82. ± 4. kJ/mol SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(O K)=76.1 kJ/mol, Δr S(300 K)=86.2 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 92.0 J/mol*K SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(O K)=76.1 kJ/mol, Δr S(300 K)=86.2 J/mol*K; M
Enthalpy of reaction
+ = ( • )
By formula: Co+ + CH4 = ( Co+ • CH4 )
Enthalpy of reaction
( • ) + = ( • 2 )
By formula: ( Co+ • C6 H6 ) + C6 H6 = ( Co+ • 2 C6 H6 )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + C2 H6 = ( Co+ • C2 H6 )
Enthalpy of reaction
( • 2 ) + = ( • 3 )
By formula: ( Co+ • 2 He ) + He = ( Co+ • 3 He )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 5.5 ± 0.4 kJ/mol SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H(0 K) = 5.10 kJ/mol, Δr S(100 K) = 46.4 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 48.5 J/mol*K SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H(0 K) = 5.10 kJ/mol, Δr S(100 K) = 46.4 J/mol*K; M
( • ) + = ( • 2 )
By formula: ( Co+ • Ne ) + Ne = ( Co+ • 2 Ne )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 8.2 ± 0.4 kJ/mol SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H90 K) = 8.16 kJ/mol, Δr S(100 K) = 52.3 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 48.5 J/mol*K SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H90 K) = 8.16 kJ/mol, Δr S(100 K) = 52.3 J/mol*K; M
( • ) + = ( • 2 )
By formula: ( Co+ • He ) + He = ( Co+ • 2 He )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 15.4 ± 0.4 kJ/mol SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H(0 K) = 14.3 kJ/mol, Δr S(100 K) = 79.9 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 82.0 J/mol*K SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H(0 K) = 14.3 kJ/mol, Δr S(100 K) = 79.9 J/mol*K; M
+ = ( • )
By formula: Co+ + CO = ( Co+ • CO )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + Ne = ( Co+ • Ne )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 10.5 ± 0.4 kJ/mol SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H(0 K) = 9.12 kJ/mol, Δr S(100 K) = 58.6 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 64.4 J/mol*K SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H(0 K) = 9.12 kJ/mol, Δr S(100 K) = 58.6 J/mol*K; M
+ = ( • )
By formula: Co+ + He = ( Co+ • He )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 14.9 ± 0.4 kJ/mol SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H(0 K) = 12.6 kJ/mol, Δr S(100 K) = 61.5 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 71.5 J/mol*K SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H(0 K) = 12.6 kJ/mol, Δr S(100 K) = 61.5 J/mol*K; M
( • ) + = ( • • )
By formula: ( Co+ • CH4 ) + H2 = ( Co+ • H2 • CH4 )
Enthalpy of reaction
( • ) + = ( • • )
By formula: ( Co+ • H2 ) + CH4 = ( Co+ • CH4 • H2 )
Enthalpy of reaction
( • ) + = ( • 2 )
By formula: ( Co+ • H2 ) + H2 = ( Co+ • 2 H2 )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 75. ± 3. kJ/mol SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=71.1 kJ/mol, Δr S(300 K)=103. J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 103. J/mol*K SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=71.1 kJ/mol, Δr S(300 K)=103. J/mol*K; M
( • 2 ) + = ( • 3 )
By formula: ( Co+ • 2 H2 ) + H2 = ( Co+ • 3 H2 )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 44. ± 2. kJ/mol SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=40. kJ/mol, Δr S(300 K)=85.8 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 85.8 J/mol*K SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=40. kJ/mol, Δr S(300 K)=85.8 J/mol*K; M
( • 3 ) + = ( • 4 )
By formula: ( Co+ • 3 H2 ) + H2 = ( Co+ • 4 H2 )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 44. ± 3. kJ/mol SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=40. kJ/mol, Δr S(300 K)=105. J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 101. J/mol*K SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=40. kJ/mol, Δr S(300 K)=105. J/mol*K; M
( • 4 ) + = ( • 5 )
By formula: ( Co+ • 4 H2 ) + H2 = ( Co+ • 5 H2 )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 22. ± 3. kJ/mol SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=18. kJ/mol, Δr S(300 K)=91.6 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 94.1 J/mol*K SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=18. kJ/mol, Δr S(300 K)=91.6 J/mol*K; M
( • 5 ) + = ( • 6 )
By formula: ( Co+ • 5 H2 ) + H2 = ( Co+ • 6 H2 )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 20. ± 3. kJ/mol SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=17. kJ/mol, Δr S(300 K)=99.6 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 99.2 J/mol*K SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=17. kJ/mol, Δr S(300 K)=99.6 J/mol*K; M
( • 6 ) + = ( • 7 )
By formula: ( Co+ • 6 H2 ) + H2 = ( Co+ • 7 H2 )
( • ) + = ( • 2 )
By formula: ( Co+ • CH4 ) + CH4 = ( Co+ • 2 CH4 )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + C2 H4 = ( Co+ • C2 H4 )
Enthalpy of reaction
( • ) + = ( • 2 )
By formula: ( Co+ • CO ) + CO = ( Co+ • 2 CO )
Enthalpy of reaction
( • ) + = ( • • )
By formula: ( Co+ • CH4 ) + C2 H6 = ( Co+ • C2 H6 • CH4 )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + H2 O = ( Co+ • H2 O )
Enthalpy of reaction
( • ) + = ( • • )
By formula: ( Co+ • H2 O ) + H2 = ( Co+ • H2 • H2 O )
Enthalpy of reaction
( • ) + = ( • • )
By formula: ( Co+ • H2 O ) + CH4 = ( Co+ • CH4 • H2 O )
Enthalpy of reaction
( • ) + = ( • • )
By formula: ( Co+ • C2 H6 ) + CH4 = ( Co+ • CH4 • C2 H6 )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + C3 H6 = ( Co+ • C3 H6 )
Enthalpy of reaction
( • ) + = ( • 2 )
By formula: ( Co+ • H2 O ) + H2 O = ( Co+ • 2 H2 O )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + C2 H2 = ( Co+ • C2 H2 )
Enthalpy of reaction
( • 2 ) + = ( • 3 )
By formula: ( Co+ • 2 CO ) + CO = ( Co+ • 3 CO )
Enthalpy of reaction
( • 3 ) + = ( • 4 )
By formula: ( Co+ • 3 CO ) + CO = ( Co+ • 4 CO )
Enthalpy of reaction
( • 4 ) + = ( • 5 )
By formula: ( Co+ • 4 CO ) + CO = ( Co+ • 5 CO )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + C6 H6 = ( Co+ • C6 H6 )
Enthalpy of reaction
( • ) + = ( • 2 )
By formula: ( Co+ • H3 N ) + H3 N = ( Co+ • 2 H3 N )
+ = ( • )
By formula: Co+ + H3 N = ( Co+ • H3 N )
+ = ( • )
By formula: Co+ + CH3 = ( Co+ • CH3 )
+ = ( • )
By formula: Co+ + CS = ( Co+ • CS )
( • 2 ) + = ( • 3 )
By formula: ( Co+ • 2 H2 O ) + H2 O = ( Co+ • 3 H2 O )
Enthalpy of reaction
( • 3 ) + = ( • 4 )
By formula: ( Co+ • 3 H2 O ) + H2 O = ( Co+ • 4 H2 O )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + C3 H4 = ( Co+ • C3 H4 )
Enthalpy of reaction
( • 3 ) + = ( • 4 )
By formula: ( Co+ • 3 CH4 ) + CH4 = ( Co+ • 4 CH4 )
Enthalpy of reaction
( • 10 ) + = ( • 11 )
By formula: ( Co+ • 10 Co ) + Co = ( Co+ • 11 Co )
Enthalpy of reaction
( • 11 ) + = ( • 12 )
By formula: ( Co+ • 11 Co ) + Co = ( Co+ • 12 Co )
Enthalpy of reaction
( • 12 ) + = ( • 13 )
By formula: ( Co+ • 12 Co ) + Co = ( Co+ • 13 Co )
Enthalpy of reaction
( • 13 ) + = ( • 14 )
By formula: ( Co+ • 13 Co ) + Co = ( Co+ • 14 Co )
Enthalpy of reaction
( • 14 ) + = ( • 15 )
By formula: ( Co+ • 14 Co ) + Co = ( Co+ • 15 Co )
Enthalpy of reaction
( • 15 ) + = ( • 16 )
By formula: ( Co+ • 15 Co ) + Co = ( Co+ • 16 Co )
Enthalpy of reaction
( • 16 ) + = ( • 17 )
By formula: ( Co+ • 16 Co ) + Co = ( Co+ • 17 Co )
Enthalpy of reaction
( • 9 ) + = ( • 10 )
By formula: ( Co+ • 9 Co ) + Co = ( Co+ • 10 Co )
Enthalpy of reaction
Ion clustering data
Go To: Top , Gas phase thermochemistry data , Reaction thermochemistry data , References , Notes
Data compilation copyright
by the U.S. Secretary of Commerce on behalf of the U.S.A.
All rights reserved.
Data compiled as indicated in comments:
RCD - Robert C. Dunbar
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the
reaction search for this species. This page allows searching
of all reactions involving this species. Searches may be limited
to ion clustering reactions. A general reaction search form is
also available .
Clustering reactions
+ = ( • )
By formula: Co+ + Ar = ( Co+ • Ar )
+ = ( • )
By formula: Co+ + CH2 = ( Co+ • CH2 )
+ = ( • )
By formula: Co+ + CH3 = ( Co+ • CH3 )
+ = ( • )
By formula: Co+ + CH4 O = ( Co+ • CH4 O )
+ = ( • )
By formula: Co+ + CH4 = ( Co+ • CH4 )
Enthalpy of reaction
( • ) + = ( • 2 )
By formula: ( Co+ • CH4 ) + CH4 = ( Co+ • 2 CH4 )
Enthalpy of reaction
( • 2 ) + = ( • 3 )
By formula: ( Co+ • 2 CH4 ) + CH4 = ( Co+ • 3 CH4 )
Enthalpy of reaction
Free energy of reaction
( • 3 ) + = ( • 4 )
By formula: ( Co+ • 3 CH4 ) + CH4 = ( Co+ • 4 CH4 )
Enthalpy of reaction
( • ) + = ( • • )
By formula: ( Co+ • CH4 ) + C2 H6 = ( Co+ • C2 H6 • CH4 )
Enthalpy of reaction
( • ) + = ( • • )
By formula: ( Co+ • CH4 ) + H2 = ( Co+ • H2 • CH4 )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + CO = ( Co+ • CO )
Enthalpy of reaction
( • ) + = ( • 2 )
By formula: ( Co+ • CO ) + CO = ( Co+ • 2 CO )
Enthalpy of reaction
( • 2 ) + = ( • 3 )
By formula: ( Co+ • 2 CO ) + CO = ( Co+ • 3 CO )
Enthalpy of reaction
( • 3 ) + = ( • 4 )
By formula: ( Co+ • 3 CO ) + CO = ( Co+ • 4 CO )
Enthalpy of reaction
( • 4 ) + = ( • 5 )
By formula: ( Co+ • 4 CO ) + CO = ( Co+ • 5 CO )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + CS = ( Co+ • CS )
+ = ( • )
By formula: Co+ + C2 H2 = ( Co+ • C2 H2 )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + C2 H4 = ( Co+ • C2 H4 )
Enthalpy of reaction
( • ) + = ( • 2 )
By formula: ( Co+ • C2 H4 ) + C2 H4 = ( Co+ • 2 C2 H4 )
+ = ( • )
By formula: Co+ + C2 H6 = ( Co+ • C2 H6 )
Enthalpy of reaction
( • ) + = ( • • )
By formula: ( Co+ • C2 H6 ) + CH4 = ( Co+ • CH4 • C2 H6 )
Enthalpy of reaction
( • 2 ) + = ( • 3 )
By formula: ( Co+ • 2 C2 H6 ) + C2 H6 = ( Co+ • 3 C2 H6 )
+ = ( • )
By formula: Co+ + C3 H4 = ( Co+ • C3 H4 )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + C3 H6 = ( Co+ • C3 H6 )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + C3 H8 = ( Co+ • C3 H8 )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + C4 H4 N2 = ( Co+ • C4 H4 N2 )
+ = ( • )
By formula: Co+ + C4 H5 N = ( Co+ • C4 H5 N )
( • ) + = ( • 2 )
By formula: ( Co+ • C4 H5 N ) + C4 H5 N = ( Co+ • 2 C4 H5 N )
+ = ( • )
By formula: Co+ + C5 H5 N = ( Co+ • C5 H5 N )
+ = ( • )
By formula: Co+ + C5 H5 N5 = ( Co+ • C5 H5 N5 )
+ = ( • )
By formula: Co+ + C6 H6 = ( Co+ • C6 H6 )
Enthalpy of reaction
( • ) + = ( • 2 )
By formula: ( Co+ • C6 H6 ) + C6 H6 = ( Co+ • 2 C6 H6 )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + Co = ( Co+ • Co )
Enthalpy of reaction
( • ) + = ( • 2 )
By formula: ( Co+ • Co ) + Co = ( Co+ • 2 Co )
Enthalpy of reaction
( • 2 ) + = ( • 3 )
By formula: ( Co+ • 2 Co ) + Co = ( Co+ • 3 Co )
Enthalpy of reaction
( • 3 ) + = ( • 4 )
By formula: ( Co+ • 3 Co ) + Co = ( Co+ • 4 Co )
Enthalpy of reaction
( • 4 ) + = ( • 5 )
By formula: ( Co+ • 4 Co ) + Co = ( Co+ • 5 Co )
Enthalpy of reaction
( • 5 ) + = ( • 6 )
By formula: ( Co+ • 5 Co ) + Co = ( Co+ • 6 Co )
Enthalpy of reaction
( • 6 ) + = ( • 7 )
By formula: ( Co+ • 6 Co ) + Co = ( Co+ • 7 Co )
Enthalpy of reaction
( • 7 ) + = ( • 8 )
By formula: ( Co+ • 7 Co ) + Co = ( Co+ • 8 Co )
Enthalpy of reaction
( • 8 ) + = ( • 9 )
By formula: ( Co+ • 8 Co ) + Co = ( Co+ • 9 Co )
Enthalpy of reaction
( • 9 ) + = ( • 10 )
By formula: ( Co+ • 9 Co ) + Co = ( Co+ • 10 Co )
Enthalpy of reaction
( • 10 ) + = ( • 11 )
By formula: ( Co+ • 10 Co ) + Co = ( Co+ • 11 Co )
Enthalpy of reaction
( • 11 ) + = ( • 12 )
By formula: ( Co+ • 11 Co ) + Co = ( Co+ • 12 Co )
Enthalpy of reaction
( • 12 ) + = ( • 13 )
By formula: ( Co+ • 12 Co ) + Co = ( Co+ • 13 Co )
Enthalpy of reaction
( • 13 ) + = ( • 14 )
By formula: ( Co+ • 13 Co ) + Co = ( Co+ • 14 Co )
Enthalpy of reaction
( • 14 ) + = ( • 15 )
By formula: ( Co+ • 14 Co ) + Co = ( Co+ • 15 Co )
Enthalpy of reaction
( • 15 ) + = ( • 16 )
By formula: ( Co+ • 15 Co ) + Co = ( Co+ • 16 Co )
Enthalpy of reaction
( • 16 ) + = ( • 17 )
By formula: ( Co+ • 16 Co ) + Co = ( Co+ • 17 Co )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + D2 = ( Co+ • D2 )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + H2 O = ( Co+ • H2 O )
Enthalpy of reaction
( • ) + = ( • • )
By formula: ( Co+ • H2 O ) + CH4 = ( Co+ • CH4 • H2 O )
Enthalpy of reaction
( • ) + = ( • 2 )
By formula: ( Co+ • H2 O ) + H2 O = ( Co+ • 2 H2 O )
Enthalpy of reaction
( • 2 ) + = ( • 3 )
By formula: ( Co+ • 2 H2 O ) + H2 O = ( Co+ • 3 H2 O )
Enthalpy of reaction
( • 3 ) + = ( • 4 )
By formula: ( Co+ • 3 H2 O ) + H2 O = ( Co+ • 4 H2 O )
Enthalpy of reaction
( • ) + = ( • • )
By formula: ( Co+ • H2 O ) + H2 = ( Co+ • H2 • H2 O )
Enthalpy of reaction
+ = ( • )
By formula: Co+ + H2 = ( Co+ • H2 )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 82. ± 4. kJ/mol SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(O K)=76.1 kJ/mol, Δr S(300 K)=86.2 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 92.0 J/mol*K SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(O K)=76.1 kJ/mol, Δr S(300 K)=86.2 J/mol*K; M
Enthalpy of reaction
( • ) + = ( • • )
By formula: ( Co+ • H2 ) + CH4 = ( Co+ • CH4 • H2 )
Enthalpy of reaction
( • ) + = ( • 2 )
By formula: ( Co+ • H2 ) + H2 = ( Co+ • 2 H2 )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 75. ± 3. kJ/mol SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=71.1 kJ/mol, Δr S(300 K)=103. J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 103. J/mol*K SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=71.1 kJ/mol, Δr S(300 K)=103. J/mol*K; M
( • 2 ) + = ( • 3 )
By formula: ( Co+ • 2 H2 ) + H2 = ( Co+ • 3 H2 )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 44. ± 2. kJ/mol SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=40. kJ/mol, Δr S(300 K)=85.8 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 85.8 J/mol*K SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=40. kJ/mol, Δr S(300 K)=85.8 J/mol*K; M
( • 3 ) + = ( • 4 )
By formula: ( Co+ • 3 H2 ) + H2 = ( Co+ • 4 H2 )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 44. ± 3. kJ/mol SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=40. kJ/mol, Δr S(300 K)=105. J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 101. J/mol*K SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=40. kJ/mol, Δr S(300 K)=105. J/mol*K; M
( • 4 ) + = ( • 5 )
By formula: ( Co+ • 4 H2 ) + H2 = ( Co+ • 5 H2 )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 22. ± 3. kJ/mol SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=18. kJ/mol, Δr S(300 K)=91.6 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 94.1 J/mol*K SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=18. kJ/mol, Δr S(300 K)=91.6 J/mol*K; M
( • 5 ) + = ( • 6 )
By formula: ( Co+ • 5 H2 ) + H2 = ( Co+ • 6 H2 )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 20. ± 3. kJ/mol SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=17. kJ/mol, Δr S(300 K)=99.6 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 99.2 J/mol*K SIDT Kemper, Bushnell, et al., 1993, 2 gas phase; Δr H(0 K)=17. kJ/mol, Δr S(300 K)=99.6 J/mol*K; M
( • 6 ) + = ( • 7 )
By formula: ( Co+ • 6 H2 ) + H2 = ( Co+ • 7 H2 )
+ = ( • )
By formula: Co+ + H3 N = ( Co+ • H3 N )
( • ) + = ( • 2 )
By formula: ( Co+ • H3 N ) + H3 N = ( Co+ • 2 H3 N )
( • 2 ) + = ( • 3 )
By formula: ( Co+ • 2 H3 N ) + H3 N = ( Co+ • 3 H3 N )
( • 3 ) + = ( • 4 )
By formula: ( Co+ • 3 H3 N ) + H3 N = ( Co+ • 4 H3 N )
+ = ( • )
By formula: Co+ + He = ( Co+ • He )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 14.9 ± 0.4 kJ/mol SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H(0 K) = 12.6 kJ/mol, Δr S(100 K) = 61.5 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 71.5 J/mol*K SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H(0 K) = 12.6 kJ/mol, Δr S(100 K) = 61.5 J/mol*K; M
( • ) + = ( • 2 )
By formula: ( Co+ • He ) + He = ( Co+ • 2 He )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 15.4 ± 0.4 kJ/mol SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H(0 K) = 14.3 kJ/mol, Δr S(100 K) = 79.9 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 82.0 J/mol*K SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H(0 K) = 14.3 kJ/mol, Δr S(100 K) = 79.9 J/mol*K; M
( • 2 ) + = ( • 3 )
By formula: ( Co+ • 2 He ) + He = ( Co+ • 3 He )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 5.5 ± 0.4 kJ/mol SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H(0 K) = 5.10 kJ/mol, Δr S(100 K) = 46.4 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 48.5 J/mol*K SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H(0 K) = 5.10 kJ/mol, Δr S(100 K) = 46.4 J/mol*K; M
+ = ( • )
By formula: Co+ + Ne = ( Co+ • Ne )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 10.5 ± 0.4 kJ/mol SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H(0 K) = 9.12 kJ/mol, Δr S(100 K) = 58.6 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 64.4 J/mol*K SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H(0 K) = 9.12 kJ/mol, Δr S(100 K) = 58.6 J/mol*K; M
( • ) + = ( • 2 )
By formula: ( Co+ • Ne ) + Ne = ( Co+ • 2 Ne )
Quantity
Value
Units
Method
Reference
Comment
Δr H° 8.2 ± 0.4 kJ/mol SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H90 K) = 8.16 kJ/mol, Δr S(100 K) = 52.3 J/mol*K; M
Quantity
Value
Units
Method
Reference
Comment
Δr S° 48.5 J/mol*K SIDT Kemper, Hsu, et al., 1991 gas phase; Δr H90 K) = 8.16 kJ/mol, Δr S(100 K) = 52.3 J/mol*K; M
References
Go To: Top , Gas phase thermochemistry data , Reaction thermochemistry data , Ion clustering data , Notes
Data compilation copyright
by the U.S. Secretary of Commerce on behalf of the U.S.A.
All rights reserved.
Chase, 1998
Chase, M.W., Jr. ,
NIST-JANAF Themochemical Tables, Fourth Edition ,
J. Phys. Chem. Ref. Data, Monograph 9 , 1998, 1-1951. [all data ]
Kemper, Bushnell, et al., 1993
Kemper, P.R. ; Bushnell, J. ; Von Koppen, P. ; Bowers, M.T. ,
Binding Energies of Co+(H2/CH4/C2H6)1,2,3 Clusters ,
J. Phys. Chem. , 1993, 97, 9, 1810, https://doi.org/10.1021/j100111a016
. [all data ]
Armentrout and Kickel, 1994
Armentrout, P.B. ; Kickel, B.L. ,
Gas Phase Thermochemistry of Transition Metal Ligand Systems: Reassessment of Values and Periodic Trends, in Organometallic Ion Chemistry, B. S. Freiser, ed , 1994. [all data ]
Kemper, Bushnell, et al., 1993, 2
Kemper, P.R. ; Bushnell, J. ; Von Helden, G. ; Bowers, M.T. ,
Co+(H2)n Clusters: Binding Energies and Molecular Parameters ,
J. Chem Phys. , 1993, 97, 1, 52, https://doi.org/10.1021/j100103a012
. [all data ]
Haynes and Armentrout, 1996
Haynes, C.L. ; Armentrout, P.B. ,
Guided Ion Beam Determination of the Co+ - H2 Bond Dissociation energy ,
Chem Phys. Let. , 1996, 249, 1-2, 64, https://doi.org/10.1016/0009-2614(95)01337-7
. [all data ]
Meyer, Khan, et al., 1995
Meyer, F. ; Khan, F.A. ; Armentrout, P.B. ,
Thermochemistry of Transition Metal Benzene complexes: Binding energies of M(C6H6)x+ (x = 1,2) for M = Ti to Cu ,
J. Am. Chem. Soc. , 1995, 117, 38, 9740, https://doi.org/10.1021/ja00143a018
. [all data ]
Kemper, Hsu, et al., 1991
Kemper, P.R. ; Hsu, M.T. ; Bowers, M.T. ,
Transition - Metal Ion - Rare Gas Clusters: Bond Strengths and Molecular Parameters for Co+(He/Ne)n, Ni+(He/Ne)n, and Cr+(He/Ne/Ar) ,
J. Phys. Chem. , 1991, 95, 26, 10600, https://doi.org/10.1021/j100179a022
. [all data ]
Rodgers and Armentrout, 2000
Rodgers, M.T. ; Armentrout, P.B. ,
Noncovalent Metal-Ligand Bond Energies as Studied by Threshold Collision-Induced Dissociation ,
Mass Spectrom. Rev. , 2000, 19, 4, 215, https://doi.org/10.1002/1098-2787(200007)19:4<215::AID-MAS2>3.0.CO;2-X
. [all data ]
Carpenter, van Koppen, et al., 1995
Carpenter, C.J. ; van Koppen, P.A.M. ; Bowers, M.T. ,
Details of Potential Energy Surfaces Involving C-C Bond Activation: Reactions of Fe+, Co+ and Ni+ with Acetone ,
J. Am. Chem. Soc. , 1995, 117, 44, 10976, https://doi.org/10.1021/ja00149a021
. [all data ]
Goebel, Haynes, et al., 1995
Goebel, S. ; Haynes, C.L. ; Khan, F.A. ; Armentrout, P.B. ,
Collision-Induced Dissociation Studies of Co(CO)x, x = 1-5: Sequential Bond Energies and the Heat of Formation of Co(CO)4 ,
J. Am. Chem. Soc. , 1995, 117, 26, 6994, https://doi.org/10.1021/ja00131a023
. [all data ]
Sievers, Jarvis, et al., 1998
Sievers, M.R. ; Jarvis, L.M. ; Armentrout, P.B. ,
Transition Metal Ethene Bonds: Thermochemistry of M+(C2H4)n (M=Ti-Cu, n=1 and 2) Complexes ,
J. Am. Chem. Soc. , 1998, 120, 8, 1891, https://doi.org/10.1021/ja973834z
. [all data ]
Haynes and Armentrout, 1994
Haynes, C.L. ; Armentrout, P.B. ,
Thermochemistry and Structures of CoC3H6+: Metallacyclic and Metal-Alkene Isomers ,
Organomettalics , 1994, 13, 9, 3480, https://doi.org/10.1021/om00021a022
. [all data ]
Magnera, David, et al., 1989
Magnera, T.F. ; David, D.E. ; Michl, J. ,
Gas -Phase Water and Hydroxyl Binding Energies for Monopoisitive First - Row Transition - Metal Ions ,
J. Am. Chem. Soc. , 1989, 111, 11, 4101, https://doi.org/10.1021/ja00193a051
. [all data ]
Marinelli and Squires, 1989
Marinelli, P.J. ; Squires, R.R. ,
Sequential Solvation of Atomic Transition Metal Ions: The Second Solvent Molecule Can Bind More Strongly than the First ,
J. Am. Chem. Soc. , 1989, 111, 11, 4101, https://doi.org/10.1021/ja00193a052
. [all data ]
Surya, Ranatunga, et al., 1997
Surya, P.I. ; Ranatunga, D.R.A. ; Freiser, B.S. ,
Infrared Multiphoton Dissociation of MC4H6+ [M=Fe, Co or Ni: C4H6=1,3-butadiene or (C2H2)(C2H4) ,
J. Am. Chem. Soc. , 1997, 119, 14, 3351, https://doi.org/10.1021/ja963200c
. [all data ]
Walter and Armentrout, 1998
Walter, D. ; Armentrout, P.B. ,
Periodic Trends in Chemical Reactivity: Reactions of Sc+, Y+, La+, and Lu+ with H2, D2 and HD ,
J. Am. Chem. Soc. , 1998, 120, 13, 3176, https://doi.org/10.1021/ja973202c
. [all data ]
Fisher, Sunderlin, et al., 1989
Fisher, E.R. ; Sunderlin, L.S. ; Armentrout, P.B. ,
Guided Ion Beam Studies of the Reactions of CO+ and Ni+ with CH3X (X=Cl, Br, I). Implications for the Metal-Methyl Ion Bond Energies ,
J. Phys. Chem. , 1989, 93, 21, 7375, https://doi.org/10.1021/j100358a026
. [all data ]
Georgiadis, Fisher, et al., 1989
Georgiadis, R. ; Fisher, E.R. ; Armentrout, P.B. ,
Neutral and Ionic Metal-Hydrogen and Metal-Carbon Bond Energies: Reactions of Co+, Ni+, and Cu+ with Ethane, Propane, Methylpropane, and Dimethylpropane ,
J. Am. Chem. Soc. , 1989, 111, 12, 4251, https://doi.org/10.1021/ja00194a016
. [all data ]
Rue, Armentrout, et al., 2001
Rue, C. ; Armentrout, P.B. ; Kretzschmar, I. ; Schroeder, D. ; Schwarz, H. ,
Guided Ion Beam Studies of the Reactions of Fe+ and Co+ With CS2 and COS ,
J. Phys. Chem. A , 2001, 105, 37, 8456, https://doi.org/10.1021/jp0120716
. [all data ]
Asher, Bellert, et al., 1994
Asher, R.L. ; Bellert, D. ; Buthelezi, T. ; Brucat, P.J. ,
The Bond Strength of Ni2+ ,
Chem. Phys. Lett. , 1994, 224, 5-6, 529, https://doi.org/10.1016/0009-2614(94)00574-5
. [all data ]
Amunugama and Rodgers, 2001
Amunugama, R. ; Rodgers, M.T. ,
Periodic Trends in the Binding of Metal Ions to Pyrimidine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory ,
J. Phys. Chem. A , 2001, 105, 43, 9883, https://doi.org/10.1021/jp010663i
. [all data ]
Gapeev and Yang, 2000
Gapeev, A. ; Yang, C.-N. ,
Binding Energies of Gas-Phase Ions with Pyrrole. Experimental and Quantum Chemical Results ,
J. Phys. Chem. A , 2000, 104, 14, 3246, https://doi.org/10.1021/jp992627d
. [all data ]
Rodgers, Stanley, et al., 2000
Rodgers, M.T. ; Stanley, J.R. ; Amunugama, R. ,
Periodic Trends in the Binding of Metal Ions to Pyridine Studied by Threshold Collision-Induced Dissociation and Density Functional Theory ,
J. Am. Chem. Soc. , 2000, 122, 44, 10969, https://doi.org/10.1021/ja0027923
. [all data ]
Rodgers and Armentrout, 2002
Rodgers, M.T. ; Armentrout, P.B. ,
Influence of d orbital occupation on the binding of metal ions to adenine ,
J. Am. Chem. Soc. , 2002, 124, 11, 2678, https://doi.org/10.1021/ja011278+
. [all data ]
Notes
Go To: Top , Gas phase thermochemistry data , Reaction thermochemistry data , Ion clustering data , References
Symbols used in this document:
S°gas,1 bar
Entropy of gas at standard conditions (1 bar)
T
Temperature
Δr G°
Free energy of reaction at standard conditions
Δr H°
Enthalpy of reaction at standard conditions
Δr S°
Entropy of reaction at standard conditions
Data from NIST Standard Reference Database 69:
NIST Chemistry WebBook
The National Institute of Standards and Technology (NIST)
uses its best efforts to deliver a high quality copy of the
Database and to verify that the data contained therein have
been selected on the basis of sound scientific judgment.
However, NIST makes no warranties to that effect, and NIST
shall not be liable for any damage that may result from
errors or omissions in the Database.
Customer support
for NIST Standard Reference Data products.