rhenium pentacarbonyl


Reaction thermochemistry data

Go To: Top, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: José A. Martinho Simões

Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.

Individual Reactions

C5HO5Re (solution) = Hydrogen atom (solution) + C5O5Re (solution)

By formula: C5HO5Re (solution) = H (solution) + C5O5Re (solution)

Quantity Value Units Method Reference Comment
Δr74.7 ± 1.0kcal/molEChemParker, Handoo, et al., 1991solvent: Acetonitrile; Please also see Tilset and Parker, 1989. The reaction enthalpy was obtained from the pKa of the hydride complex (MH), 21.1, and from the oxidation potential of the anion (M-), Re(CO)5(-), by using the equation: ΔHrxn [kJ/mol] = 5.71pKa(MH) + 96.485(Eo)ox(M-) + C. C is a constant that was calculated as 59.49 kcal/mol Parker, Handoo, et al., 1991, by adjusting the previous equation to the calorimetrically derived values for the reactions Cr(Cp)(CO)3(H)(solution) = Cr(Cp)(CO)3(solution) + H(solution), 61.5 ± 1.0 kcal/mol, and Cr(Cp)(CO)2(PPh3)(H)(solution) = Cr(Cp)(CO)2(PPh3)(solution) + H(solution), 59.8 ± 1.0 kcal/mol Kiss, Zhang, et al., 1990. C depends on the solvent and on the reference electrode. The value given implies that the electrode potentials are referenced to ferrocene/ferricinium electrode

Dirhenium decacarbonyl (solution) = 2C5O5Re (solution)

By formula: C10O10Re2 (solution) = 2C5O5Re (solution)

Quantity Value Units Method Reference Comment
Δr>39.7kcal/molKinSMarcomini and Poë, 1984solvent: Decalin; Please also see Poë, 1981. The reaction enthalpy was derived from the enthalpy of activation, 39.6 ± 0.2 kcal/mol Poë, 1981, by assuming a negligible barrier for the radical recombination. This procedure was later considered to yield a low limit of the reaction enthalpy Poë, 1983 Marcomini and Poë, 1984 Marcomini and Poë, 1983 Coville, Stolzenberg, et al., 1983. See also Schmidt, Trogler, et al., 1984

References

Go To: Top, Reaction thermochemistry data, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Parker, Handoo, et al., 1991
Parker, V.D.; Handoo, K.L.; Roness, F.; Tilset, M., J. Am. Chem. Soc., 1991, 113, 7493. [all data]

Tilset and Parker, 1989
Tilset, M.; Parker, V.D., J. Am. Chem. Soc., 1989, 111, 6711; ibid. 1990. [all data]

Kiss, Zhang, et al., 1990
Kiss, G.; Zhang, K.; Mukerjee, S.L.; Hoff, C.; Roper, G.C., J. Am. Chem. Soc., 1990, 112, 5657. [all data]

Marcomini and Poë, 1984
Marcomini, A.; Poë, A., J. Chem. Soc., Dalton Trans., 1984, 95.. [all data]

Poë, 1981
Poë, A., ACS Symp. Ser., 1981, No. 155, 135. [all data]

Poë, 1983
Poë, A., Chem. Brit., 1983, 19, 997. [all data]

Marcomini and Poë, 1983
Marcomini, A.; Poë, A., J. Am. Chem. Soc., 1983, 105, 6952. [all data]

Coville, Stolzenberg, et al., 1983
Coville, N.J.; Stolzenberg, A.M.; Muetterties, E.L., J. Am. Chem. Soc., 1983, 105, 2499. [all data]

Schmidt, Trogler, et al., 1984
Schmidt, S.P.; Trogler, W.C.; Basolo, F., J. Am. Chem. Soc., 1984, 106, 1308. [all data]


Notes

Go To: Top, Reaction thermochemistry data, References