HS anion
- Formula: HS-
- Molecular weight: 33.073
- CAS Registry Number: 15035-72-0
- Information on this page:
- Other data available:
- Options:
Reaction thermochemistry data
Go To: Top, Gas phase ion energetics data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled as indicated in comments:
B - John E. Bartmess
M - Michael M. Meot-Ner (Mautner) and Sharon G. Lias
Note: Please consider using the reaction search for this species. This page allows searching of all reactions involving this species. A general reaction search form is also available. Future versions of this site may rely on reaction search pages in place of the enumerated reaction displays seen below.
Individual Reactions
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1470. ± 3. | kJ/mol | AVG | N/A | Average of 6 out of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1441. ± 13. | kJ/mol | H-TS | Rempala and Ervin, 2000 | gas phase; B |
ΔrG° | 1443. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrG° | 1443.1 ± 0.42 | kJ/mol | H-TS | Shiell, Hu, et al., 1900 | gas phase; 0K:350.125±0.009 kcal/mol, corr to 298K from Gurvich, Veyts, et al., With EA( Breyer, Frey, et al., 1981)BDE(0K)=89.97±0.05; B |
ΔrG° | 1446. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase; B |
ΔrG° | 1432.2 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; MnO2-(t); ; ΔS(EA)=5.4; B |
By formula: (HS- • 4294967295S) + S = HS-
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 502.62 | kJ/mol | N/A | Chaibi, Delsart, et al., 2006 | gas phase; For H(32)S-. Given: 2.3147282(17) eV; B |
ΔrH° | 502.83 ± 0.75 | kJ/mol | Ther | Breyer, Frey, et al., 1981 | gas phase; B |
ΔrH° | 503.8 ± 9.2 | kJ/mol | Ther | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale; B |
ΔrH° | 358.0 | kJ/mol | Ther | Shiell, Hu, et al., 1900 | gas phase; 0K:350.125±0.009 kcal/mol, corr to 298K from Gurvich, Veyts, et al., With EA( Breyer, Frey, et al., 1981)BDE(0K)=89.97±0.05; B |
By formula: HS- + C2H6O = (HS- • C2H6O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 68.20 ± 0.42 | kJ/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B,M |
ΔrH° | 67.8 ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 79.5 | J/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
ΔrS° | 82.8 | J/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 44.4 ± 1.7 | kJ/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B |
ΔrG° | 43.1 ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: HS- + H2O = (HS- • H2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 59.4 ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
ΔrH° | 59.4 | kJ/mol | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 78.2 | J/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
ΔrS° | 78.2 | J/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 36. ± 8.4 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: (HS- • 2H2O) + H2O = (HS- • 3H2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 49.0 | kJ/mol | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
ΔrH° | 49.0 | kJ/mol | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 98.3 | J/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
ΔrS° | 98.3 | J/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
By formula: (HS- • H2O) + H2O = (HS- • 2H2O)
Bond type: Hydrogen bond (negative ion to hydride)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 52.7 | kJ/mol | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
ΔrH° | 52.7 | kJ/mol | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 85.4 | J/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
ΔrS° | 85.4 | J/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
By formula: HS- + CHN = (HS- • CHN)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 87.9 ± 4.2 | kJ/mol | IMRE | Meot-ner, 1988 | gas phase; See also H2S..CN-; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 84. | J/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 62.8 ± 4.2 | kJ/mol | IMRE | Meot-ner, 1988 | gas phase; See also H2S..CN-; B |
By formula: HS- + C4H10O = (HS- • C4H10O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 70.3 ± 1.3 | kJ/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 83.3 | J/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 45.6 ± 5.0 | kJ/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B |
By formula: HS- + C2H3F3O = (HS- • C2H3F3O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 112.1 ± 2.1 | kJ/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 94.6 | J/mol*K | PHPMS | Sieck and Meot-ner, 1989 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 84.1 ± 6.3 | kJ/mol | TDAs | Sieck and Meot-ner, 1989 | gas phase; B |
By formula: HS- + H2S = (HS- • H2S)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 55.2 ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 82.4 | J/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 31. ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: HS- + C4H5N = (HS- • C4H5N)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 96.2 ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B,M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 102. | J/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 65.7 ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: HS- + C6H11NO3 = (HS- • C6H11NO3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 115. ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 80.3 ± 8.4 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: HS- + CH4O = (HS- • CH4O)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 71.1 ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 46.0 ± 4.2 | kJ/mol | TDAs | Meot-ner, 1988 | gas phase; B |
By formula: HS- + C6H11NO3 = (HS- • C6H11NO3)
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 115. | kJ/mol | PHPMS | Meot-ner, 1988 | gas phase; M |
Quantity | Value | Units | Method | Reference | Comment |
ΔrS° | 116. | J/mol*K | PHPMS | Meot-ner, 1988 | gas phase; M |
Gas phase ion energetics data
Go To: Top, Reaction thermochemistry data, Constants of diatomic molecules, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: John E. Bartmess
Protonation reactions
Quantity | Value | Units | Method | Reference | Comment |
---|---|---|---|---|---|
ΔrH° | 1470. ± 3. | kJ/mol | AVG | N/A | Average of 6 out of 7 values; Individual data points |
Quantity | Value | Units | Method | Reference | Comment |
ΔrG° | 1441. ± 13. | kJ/mol | H-TS | Rempala and Ervin, 2000 | gas phase |
ΔrG° | 1443. ± 8.4 | kJ/mol | IMRE | Bartmess, Scott, et al., 1979 | gas phase; value altered from reference due to change in acidity scale |
ΔrG° | 1443.1 ± 0.42 | kJ/mol | H-TS | Shiell, Hu, et al., 1900 | gas phase; 0K:350.125±0.009 kcal/mol, corr to 298K from Gurvich, Veyts, et al., With EA( Breyer, Frey, et al., 1981)BDE(0K)=89.97±0.05 |
ΔrG° | 1446. ± 8.4 | kJ/mol | IMRE | Cumming and Kebarle, 1978 | gas phase |
ΔrG° | 1432.2 | kJ/mol | N/A | Check, Faust, et al., 2001 | gas phase; MnO2-(t); ; ΔS(EA)=5.4 |
Constants of diatomic molecules
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, References, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Data compiled by: Klaus P. Huber and Gerhard H. Herzberg
Data collected through July, 1977
Symbol | Meaning |
---|---|
State | electronic state and / or symmetry symbol |
Te | minimum electronic energy (cm-1) |
ωe | vibrational constant – first term (cm-1) |
ωexe | vibrational constant – second term (cm-1) |
ωeye | vibrational constant – third term (cm-1) |
Be | rotational constant in equilibrium position (cm-1) |
αe | rotational constant – first term (cm-1) |
γe | rotation-vibration interaction constant (cm-1) |
De | centrifugal distortion constant (cm-1) |
βe | rotational constant – first term, centrifugal force (cm-1) |
re | internuclear distance (Å) |
Trans. | observed transition(s) corresponding to electronic state |
ν00 | position of 0-0 band (units noted in table) |
State | Te | ωe | ωexe | ωeye | Be | αe | γe | De | βe | re | Trans. | ν00 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
X 1Σ+ | The analysis of the shape of the photodetachment cross section curve Steiner, 1968 leads to ground state constants which are indistinguishable from those of SH (X 2Π), confirming theoretical predictions by Cade, 1967. |
Notes
1 | From D00(SH) and the electron affinities of SH and S. |
2 | From the photodetachment cross section Steiner, 1968. |
References
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, Notes
Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.
Rempala and Ervin, 2000
Rempala, K.; Ervin, K.M.,
Collisional activation of the Endoergic Hydrogen Atom Transfer Reaction S-(2P) + H2 - SH- + H,
J. Chem. Phys., 2000, 112, 10, 4579, https://doi.org/10.1063/1.481016
. [all data]
Bartmess, Scott, et al., 1979
Bartmess, J.E.; Scott, J.A.; McIver, R.T., Jr.,
The gas phase acidity scale from methanol to phenol,
J. Am. Chem. Soc., 1979, 101, 6047. [all data]
Shiell, Hu, et al., 1900
Shiell, R.C.; Hu, X.K.; Hu, Q.J.; Hepburn, J.W.,
A determination of the bond dissociation energy (D-0(H-SH)): Threshold ion-pair production spectroscopy (TIPPS) of a triatomic molecule,
J. Phys. Chem. A, 1900, 104, 19, 4339-4342, https://doi.org/10.1021/jp000025k
. [all data]
Gurvich, Veyts, et al.
Gurvich, L.V.; Veyts, I.V.; Alcock, C.B.,
Hemisphere Publishing, NY, 1989, V. 1 2, Thermodynamic Properties of Individual Substances, 4th Ed. [all data]
Breyer, Frey, et al., 1981
Breyer, F.; Frey, P.; Hotop, H.,
High Resolution Photoelectron Spectrometry of Negative Ions: Rotational Transitions in Laser-Photodetachment of OH-, SH-, and SD-,
Z. Phys. A, 1981, 300, 1, 7, https://doi.org/10.1007/BF01412609
. [all data]
Cumming and Kebarle, 1978
Cumming, J.B.; Kebarle, P.,
Summary of gas phase measurements involving acids AH. Entropy changes in proton transfer reactions involving negative ions. Bond dissociation energies D(A-H) and electron affinities EA(A),
Can. J. Chem., 1978, 56, 1. [all data]
Check, Faust, et al., 2001
Check, C.E.; Faust, T.O.; Bailey, J.M.; Wright, B.J.; Gilbert, T.M.; Sunderlin, L.S.,
Addition of Polarization and Diffuse Functions to the LANL2DZ Basis Set for P-Block Elements,
J. Phys. Chem. A,, 2001, 105, 34, 8111, https://doi.org/10.1021/jp011945l
. [all data]
Chaibi, Delsart, et al., 2006
Chaibi, W.; Delsart, C.; Drag, C.; Blondel, C.,
High precision measurement of the (SH)-S-32 electron affinity by laser detachment microscopy,
J. Molec. Spectros., 2006, 239, 1, 11-15, https://doi.org/10.1016/j.jms.2006.05.012
. [all data]
Sieck and Meot-ner, 1989
Sieck, L.W.; Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 8. RS-..HOR Bond Strengths. Correlation with Acidities.,
J. Phys. Chem., 1989, 93, 4, 1586, https://doi.org/10.1021/j100341a079
. [all data]
Meot-ner, 1988
Meot-ner, M.,
Ionic Hydrogen Bond and Ion Solvation. 6. Interaction Energies of the Acetate Ion with Organic Molecules. Comparison of CH3COO- with Cl-, CN-, and SH-,
J. Am. Chem. Soc., 1988, 110, 12, 3854, https://doi.org/10.1021/ja00220a022
. [all data]
Steiner, 1968
Steiner, B.,
Photodetachment of Electrons From SH-,
J. Chem. Phys., 1968, 49, 11, 5097, https://doi.org/10.1063/1.1670004
. [all data]
Cade, 1967
Cade, P.E.,
Hartree-Fock wavefunctions, potential curves, and molecular properties for OH-(1Σ+) and SH-(1Σ+),
J. Chem. Phys., 1967, 47, 2390. [all data]
Notes
Go To: Top, Reaction thermochemistry data, Gas phase ion energetics data, Constants of diatomic molecules, References
- Symbols used in this document:
ΔrG° Free energy of reaction at standard conditions ΔrH° Enthalpy of reaction at standard conditions ΔrS° Entropy of reaction at standard conditions - Data from NIST Standard Reference Database 69: NIST Chemistry WebBook
- The National Institute of Standards and Technology (NIST) uses its best efforts to deliver a high quality copy of the Database and to verify that the data contained therein have been selected on the basis of sound scientific judgment. However, NIST makes no warranties to that effect, and NIST shall not be liable for any damage that may result from errors or omissions in the Database.
- Customer support for NIST Standard Reference Data products.