Oxalic acid

Data at NIST subscription sites:

NIST subscription sites provide data under the NIST Standard Reference Data Program, but require an annual fee to access. The purpose of the fee is to recover costs associated with the development of data collections included in such sites. Your institution may already be a subscriber. Follow the links above to find out more about the data in these sites and their terms of usage.


Gas phase thermochemistry data

Go To: Top, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Glushko Thermocenter, Russian Academy of Sciences, Moscow

Constant pressure heat capacity of gas

Cp,gas (J/mol*K) Temperature (K) Reference Comment
38.4050.Dorofeeva O.V., 1997p=1 bar.
45.04100.
54.32150.
65.10200.
85. ± 5.298.15
85.52300.
102.17400.
115.25500.
125.47600.
133.54700.
140.04800.
145.36900.
149.791000.
153.531100.
156.711200.
159.441300.
161.801400.
163.841500.

Condensed phase thermochemistry data

Go To: Top, Gas phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Δfsolid-828.93 ± 0.46kJ/molCmBrown, 1969ALS
Δfsolid-829.94 ± 0.96kJ/molCcbWilhoit and Shiao, 1964ALS
Quantity Value Units Method Reference Comment
Δcsolid-242.9 ± 0.92kJ/molCcbWilhoit and Shiao, 1964Corresponding Δfsolid = -829.94 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Δcsolid-253.5 ± 0.46kJ/molCcbVerkade, Hartman, et al., 1926Reanalyzed by Cox and Pilcher, 1970, Original value = -251. kJ/mol; See Verkade, Hartman, et al., 1924; Corresponding Δfsolid = -819.35 kJ/mol (simple calculation by NIST; no Washburn corrections); ALS
Quantity Value Units Method Reference Comment
solid,1 bar115.6J/mol*KN/ALuff and Reed, 1982DH

Constant pressure heat capacity of solid

Cp,solid (J/mol*K) Temperature (K) Reference Comment
105.9298.15Luff and Reed, 1982T = 5 to 320 K.; DH
146.340.David, 1964T = 298 to 373 K. Mean value. T = uncertain.; DH
118.0323.Satoh and Sogabe, 1939T = 0 to 100°C. Mean value given.; DH
120.1298.1Parks, Kelley, et al., 1929Extrapolation below 90 K, 38.49 J/mol*K. Revision of previous data.; DH

Phase change data

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled as indicated in comments:
TRC - Thermodynamics Research Center, NIST Boulder Laboratories, Chris Muzny director
ALS - Hussein Y. Afeefy, Joel F. Liebman, and Stephen E. Stein
AC - William E. Acree, Jr., James S. Chickos
DH - Eugene S. Domalski and Elizabeth D. Hearing

Quantity Value Units Method Reference Comment
Tfus464.45KN/AWilhoit and Shiao, 1964, 2Uncertainty assigned by TRC = 1.5 K; TRC
Quantity Value Units Method Reference Comment
Δsub97.906kJ/molVBradley and Cleasby, 1953ALS

Enthalpy of sublimation

ΔsubH (kJ/mol) Temperature (K) Method Reference Comment
61.8306.AGranovskaya, 1947Based on data from 292. to 320. K.; AC
90.6333. to 378.GSNoyes and Wobbe, 1926AC

Enthalpy of phase transition

ΔHtrs (kJ/mol) Temperature (K) Initial Phase Final Phase Reference Comment
1.300393.2crystaline, IIcrystaline, IPetropavlov, Tsygankova, et al., 1988DH

Entropy of phase transition

ΔStrs (J/mol*K) Temperature (K) Initial Phase Final Phase Reference Comment
3.3393.2crystaline, IIcrystaline, IPetropavlov, Tsygankova, et al., 1988DH

In addition to the Thermodynamics Research Center (TRC) data available from this site, much more physical and chemical property data is available from the following TRC products:


Mass spectrum (electron ionization)

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, UV/Visible spectrum, Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

Mass spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

Due to licensing restrictions, this spectrum cannot be downloaded.

Owner NIST Mass Spectrometry Data Center
Collection (C) 2014 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin Japan AIST/NIMC Database- Spectrum MS-NW-1856
NIST MS number 229396

All mass spectra in this site (plus many more) are available from the NIST/EPA/NIH Mass Spectral Library. Please see the following for information about the library and its accompanying search program.


UV/Visible spectrum

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), Gas Chromatography, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: Victor Talrose, Alexander N. Yermakov, Alexy A. Usov, Antonina A. Goncharova, Axlexander N. Leskin, Natalia A. Messineva, Natalia V. Trusova, Margarita V. Efimkina

Spectrum

Notice: This spectrum may be better viewed with a Javascript and HTML 5 enabled browser.

UVVis spectrum
For Zoom
1.) Enter the desired X axis range (e.g., 100, 200)
2.) Check here for automatic Y scaling
3.) Press here to zoom

Additional Data

View image of digitized spectrum (can be printed in landscape orientation).

View spectrum image in SVG format.

Download spectrum in JCAMP-DX format.

Source Pestemer and Alslev-Klinker, 1949
Owner INEP CP RAS, NIST OSRD
Collection (C) 2007 copyright by the U.S. Secretary of Commerce
on behalf of the United States of America. All rights reserved.
Origin INSTITUTE OF ENERGY PROBLEMS OF CHEMICAL PHYSICS, RAS
Source reference RAS UV No. 9249
Instrument Quartz spectrograph
Melting point 189.5 dec
Boiling point sub 157

Gas Chromatography

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), UV/Visible spectrum, References, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Data compiled by: NIST Mass Spectrometry Data Center, William E. Wallace, director

Normal alkane RI, non-polar column, temperature ramp

View large format table.

Column type Active phase I Reference Comment
CapillaryRTX-5748.Setkova, Risticevic, et al., 200710. m/0.18 mm/0.2 μm, He, 40. C @ 0.5 min, 50. K/min, 275. C @ 0.5 min

References

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, Notes

Data compilation copyright by the U.S. Secretary of Commerce on behalf of the U.S.A. All rights reserved.

Dorofeeva O.V., 1997
Dorofeeva O.V., Unpublished results. Thermocenter of Russian Academy of Science, Moscow, 1997. [all data]

Brown, 1969
Brown, M.A.H., The heats of formation of selected cyanide and oxalate compounds, Diss. Abstr., 1969, 29, 3696. [all data]

Wilhoit and Shiao, 1964
Wilhoit, R.C.; Shiao, D., Thermochemistry of biologically important compounds. Heats of combustion of solid organic acids., J. Chem. Eng. Data, 1964, 9, 595-599. [all data]

Verkade, Hartman, et al., 1926
Verkade, P.E.; Hartman, H.; Coops, J., Calorimetric researches. X. Heats of combustion of successive terms of homologous series: dicarboxylic acids of the oxalic acid series, Rec. Trav. Chim. Pays/Bas, 1926, 45, 373-393. [all data]

Cox and Pilcher, 1970
Cox, J.D.; Pilcher, G., Thermochemistry of Organic and Organometallic Compounds, Academic Press, New York, 1970, 1-636. [all data]

Verkade, Hartman, et al., 1924
Verkade, P.E.; Hartman, H.; Coops, J., Jr., Chemistry - The molecular heat of combustion of successive terms of homologous series, Kom. Med. Akad. Ueknschap. Proc., 1924, 27, 859-866. [all data]

Luff and Reed, 1982
Luff, B.B.; Reed, R.B., Low-temperature heat capacity and entropy of oxalic acid and of biuret, J. Chem. Eng. Data, 1982, 27, 290-292. [all data]

David, 1964
David, D.J., Determination of specific heat and heat of fusion by differential thermal analysis. Study of theory and operating parameters, Anal. Chem., 1964, 36, 2162-2166. [all data]

Satoh and Sogabe, 1939
Satoh, S.; Sogabe, T., The specific heats of some solid aliphatic acids and their ammonium salts and the atomic heat of nitrogen, Sci. Pap. Inst. Phys. Chem. Res. (Tokyo), 1939, 36, 97-105. [all data]

Parks, Kelley, et al., 1929
Parks, G.S.; Kelley, K.K.; Huffman, H.M., Thermal data on organic compounds. V. A revision of the entropies and free energies of nineteen organic compounds, J. Am. Chem. Soc., 1929, 51, 1969-1973. [all data]

Wilhoit and Shiao, 1964, 2
Wilhoit, R.C.; Shiao, D., Thermochemistry of Biologically Important Compounds. Heats of Combustion of Solid Organic Acids, J. Chem. Eng. Data, 1964, 9, 595. [all data]

Bradley and Cleasby, 1953
Bradley, R.S.; Cleasby, T.G., The vapour pressure and lattice energy of hydrogen-bonded crystals. Part I. Oxamide, oxamic acid, and rubeanie acid, J. Chem. Soc., 1953, 1681-16. [all data]

Granovskaya, 1947
Granovskaya, A., Russ. J. Phys. Chem., 1947, 21, 967. [all data]

Noyes and Wobbe, 1926
Noyes, W. Albert; Wobbe, Delbert E., THE VAPOR PRESSURE OF ANHYDROUS OXALIC ACID, J. Am. Chem. Soc., 1926, 48, 7, 1882-1887, https://doi.org/10.1021/ja01418a012 . [all data]

Petropavlov, Tsygankova, et al., 1988
Petropavlov, N.N.; Tsygankova, I.G.; Teslenko, L.A., Microcalorimetric investigation of polymorphic transitions in organic crystals, Sov. Phys. Crystallogr., 1988, 33(6), 853-855. [all data]

Pestemer and Alslev-Klinker, 1949
Pestemer, M.; Alslev-Klinker, A., Z. Elektrochem, 1949, 53, 387. [all data]

Setkova, Risticevic, et al., 2007
Setkova, L.; Risticevic, S.; Pawliszyn, J., Rapid headspace solid-phase microextraction-gas chromatographic?time-of-flight mass spectrometric method for qualitative profiling of ice wine volatile fraction II: Classification of Canadian and Czech ice wines using statistical evaluation of the data, J. Chromatogr. A, 2007, 1147, 2, 224-240, https://doi.org/10.1016/j.chroma.2007.02.052 . [all data]


Notes

Go To: Top, Gas phase thermochemistry data, Condensed phase thermochemistry data, Phase change data, Mass spectrum (electron ionization), UV/Visible spectrum, Gas Chromatography, References